再生医学和化妆品的噬菌体。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Nhat-Le Bui, Mai Anh Nguyen, Manh-Long Nguyen, Quoc-Cuong Bui, Dinh-Toi Chu
{"title":"再生医学和化妆品的噬菌体。","authors":"Nhat-Le Bui,&nbsp;Mai Anh Nguyen,&nbsp;Manh-Long Nguyen,&nbsp;Quoc-Cuong Bui,&nbsp;Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.03.017","DOIUrl":null,"url":null,"abstract":"<p><p>Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phage for regenerative medicine and cosmetics.\",\"authors\":\"Nhat-Le Bui,&nbsp;Mai Anh Nguyen,&nbsp;Manh-Long Nguyen,&nbsp;Quoc-Cuong Bui,&nbsp;Dinh-Toi Chu\",\"doi\":\"10.1016/bs.pmbts.2023.03.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2023.03.017\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.03.017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

噬菌体是一种具有战胜细菌能力的特定病毒。由于抗微生物细菌的流行率不断上升,噬菌体在皮肤感染或痤疮治疗中的应用再次引起了人们的兴趣。此外,噬菌体还表达其在伤口愈合或皮肤再生方面的功效。由于生物工程技术的发展,噬菌体展示是一种以噬菌体为工具的技术,近年来已被应用于许多生物技术和医学领域,尤其是再生医学领域。噬菌体可以用作纳米材料、递送载体、生长因子替代品,或用于几种噬菌体展示衍生的治疗方法和干细胞技术。尽管噬菌体无疑是现代医学中一种潜在而有效的替代品,但关于噬菌体的抗菌功效以及对预期靶点的亲和力,仍有争议的证据。未来的任务是优化噬菌体衍生物质的特异性、稳定性、亲和力和生物分布。在本章中,我们重点介绍了噬菌体的几种机制和应用,并通过先前的研究结果分析了噬菌体在再生药物和化妆品中的未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phage for regenerative medicine and cosmetics.

Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信