{"title":"头脑和机器中的归纳推理。","authors":"Sudeep Bhatia","doi":"10.1037/rev0000446","DOIUrl":null,"url":null,"abstract":"<p><p>Induction-the ability to generalize from existing knowledge-is the cornerstone of intelligence. Cognitive models of human induction are largely limited to toy problems and cannot make quantitative predictions for the thousands of different induction arguments that have been studied by researchers, or to the countless induction arguments that could be encountered in everyday life. Leading large language models (LLMs) go beyond toy problems but fail to mimic observed patterns of human induction. In this article, we combine rich knowledge representations obtained from LLMs with theories of human inductive reasoning developed by cognitive psychologists. We show that this integrative approach can capture several benchmark empirical findings on human induction and generate human-like responses to natural language arguments with thousands of common categories and properties. These findings shed light on the cognitive mechanisms at play in human induction and show how existing theories in psychology and cognitive science can be integrated with new methods in artificial intelligence, to successfully model high-level human cognition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":" ","pages":"1373-1391"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive reasoning in minds and machines.\",\"authors\":\"Sudeep Bhatia\",\"doi\":\"10.1037/rev0000446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Induction-the ability to generalize from existing knowledge-is the cornerstone of intelligence. Cognitive models of human induction are largely limited to toy problems and cannot make quantitative predictions for the thousands of different induction arguments that have been studied by researchers, or to the countless induction arguments that could be encountered in everyday life. Leading large language models (LLMs) go beyond toy problems but fail to mimic observed patterns of human induction. In this article, we combine rich knowledge representations obtained from LLMs with theories of human inductive reasoning developed by cognitive psychologists. We show that this integrative approach can capture several benchmark empirical findings on human induction and generate human-like responses to natural language arguments with thousands of common categories and properties. These findings shed light on the cognitive mechanisms at play in human induction and show how existing theories in psychology and cognitive science can be integrated with new methods in artificial intelligence, to successfully model high-level human cognition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\" \",\"pages\":\"1373-1391\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000446\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000446","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Induction-the ability to generalize from existing knowledge-is the cornerstone of intelligence. Cognitive models of human induction are largely limited to toy problems and cannot make quantitative predictions for the thousands of different induction arguments that have been studied by researchers, or to the countless induction arguments that could be encountered in everyday life. Leading large language models (LLMs) go beyond toy problems but fail to mimic observed patterns of human induction. In this article, we combine rich knowledge representations obtained from LLMs with theories of human inductive reasoning developed by cognitive psychologists. We show that this integrative approach can capture several benchmark empirical findings on human induction and generate human-like responses to natural language arguments with thousands of common categories and properties. These findings shed light on the cognitive mechanisms at play in human induction and show how existing theories in psychology and cognitive science can be integrated with new methods in artificial intelligence, to successfully model high-level human cognition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.