Jiaji Pan, Qijin Zeng, Ke Peng, Yulin Zhou, Zhiquan Shu
{"title":"低温保存复温方法综述。","authors":"Jiaji Pan, Qijin Zeng, Ke Peng, Yulin Zhou, Zhiquan Shu","doi":"10.1089/bio.2023.0015","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies. This article reviewed rewarming methods, including traditional boundary rewarming commonly used for small-volume biological materials and other advanced techniques that could be potentially feasible for organ preservation in the future. The review focused on various rewarming technique principles, typical applications, and their possible limitations for cryopreservation of biological materials. This article introduced nanowarming methods in the progressing optimization and the possible difficulties. The trends of novel rewarming methods were discussed, and suggestions were given for future development.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"304-311"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Rewarming Methods for Cryopreservation.\",\"authors\":\"Jiaji Pan, Qijin Zeng, Ke Peng, Yulin Zhou, Zhiquan Shu\",\"doi\":\"10.1089/bio.2023.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies. This article reviewed rewarming methods, including traditional boundary rewarming commonly used for small-volume biological materials and other advanced techniques that could be potentially feasible for organ preservation in the future. The review focused on various rewarming technique principles, typical applications, and their possible limitations for cryopreservation of biological materials. This article introduced nanowarming methods in the progressing optimization and the possible difficulties. The trends of novel rewarming methods were discussed, and suggestions were given for future development.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"304-311\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies. This article reviewed rewarming methods, including traditional boundary rewarming commonly used for small-volume biological materials and other advanced techniques that could be potentially feasible for organ preservation in the future. The review focused on various rewarming technique principles, typical applications, and their possible limitations for cryopreservation of biological materials. This article introduced nanowarming methods in the progressing optimization and the possible difficulties. The trends of novel rewarming methods were discussed, and suggestions were given for future development.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.