{"title":"猪骨骼肌能量代谢、脂质积累和肉质的营养调节。","authors":"Enfa Yan, Jianxin Guo, Jingdong Yin","doi":"10.1016/j.aninu.2023.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 185-192"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/00/main.PMC10556049.pdf","citationCount":"0","resultStr":"{\"title\":\"Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs\",\"authors\":\"Enfa Yan, Jianxin Guo, Jingdong Yin\",\"doi\":\"10.1016/j.aninu.2023.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"14 \",\"pages\":\"Pages 185-192\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/00/main.PMC10556049.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs
The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.