Lewis S Crawford, Damien C Boorman, Kevin A Keay, Luke A Henderson
{"title":"疼痛传导器:急性和慢性疼痛的脑干调节。","authors":"Lewis S Crawford, Damien C Boorman, Kevin A Keay, Luke A Henderson","doi":"10.1097/SPC.0000000000000598","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>It is well established in experimental settings that brainstem circuits powerfully modulate the multidimensional experience of pain. This review summarizes current understanding of the roles of brainstem nuclei in modulating the intensity of pain, and how these circuits might be recruited therapeutically for pain relief in chronic and palliative settings.</p><p><strong>Recent findings: </strong>The development of ultra-high field magnetic resonance imaging and more robust statistical analyses has led to a more integrated understanding of brainstem function during pain. It is clear that a number of brainstem nuclei and their overlapping pathways are recruited to either enhance or inhibit incoming nociceptive signals. This review reflects on early preclinical research, which identified in detail brainstem analgesic function, putting into context contemporary investigations in humans that have identified the role of specific brainstem circuits in modulating pain, their contribution to pain chronicity, and even the alleviation of palliative comorbidities.</p><p><strong>Summary: </strong>The brainstem is an integral component of the circuitry underpinning pain perception. Enhanced understanding of its circuitry in experimental studies in humans has, in recent years, increased the possibility for better optimized pain-relief strategies and the identification of vulnerabilities to postsurgical pain problems. When integrated into the clinical landscape, these experimental findings of brainstem modulation of pain signalling have the potential to contribute to the optimization of pain management and patient care from acute, to chronic, to palliative states.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pain conductor: brainstem modulation in acute and chronic pain.\",\"authors\":\"Lewis S Crawford, Damien C Boorman, Kevin A Keay, Luke A Henderson\",\"doi\":\"10.1097/SPC.0000000000000598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>It is well established in experimental settings that brainstem circuits powerfully modulate the multidimensional experience of pain. This review summarizes current understanding of the roles of brainstem nuclei in modulating the intensity of pain, and how these circuits might be recruited therapeutically for pain relief in chronic and palliative settings.</p><p><strong>Recent findings: </strong>The development of ultra-high field magnetic resonance imaging and more robust statistical analyses has led to a more integrated understanding of brainstem function during pain. It is clear that a number of brainstem nuclei and their overlapping pathways are recruited to either enhance or inhibit incoming nociceptive signals. This review reflects on early preclinical research, which identified in detail brainstem analgesic function, putting into context contemporary investigations in humans that have identified the role of specific brainstem circuits in modulating pain, their contribution to pain chronicity, and even the alleviation of palliative comorbidities.</p><p><strong>Summary: </strong>The brainstem is an integral component of the circuitry underpinning pain perception. Enhanced understanding of its circuitry in experimental studies in humans has, in recent years, increased the possibility for better optimized pain-relief strategies and the identification of vulnerabilities to postsurgical pain problems. When integrated into the clinical landscape, these experimental findings of brainstem modulation of pain signalling have the potential to contribute to the optimization of pain management and patient care from acute, to chronic, to palliative states.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SPC.0000000000000598\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SPC.0000000000000598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The pain conductor: brainstem modulation in acute and chronic pain.
Purpose of review: It is well established in experimental settings that brainstem circuits powerfully modulate the multidimensional experience of pain. This review summarizes current understanding of the roles of brainstem nuclei in modulating the intensity of pain, and how these circuits might be recruited therapeutically for pain relief in chronic and palliative settings.
Recent findings: The development of ultra-high field magnetic resonance imaging and more robust statistical analyses has led to a more integrated understanding of brainstem function during pain. It is clear that a number of brainstem nuclei and their overlapping pathways are recruited to either enhance or inhibit incoming nociceptive signals. This review reflects on early preclinical research, which identified in detail brainstem analgesic function, putting into context contemporary investigations in humans that have identified the role of specific brainstem circuits in modulating pain, their contribution to pain chronicity, and even the alleviation of palliative comorbidities.
Summary: The brainstem is an integral component of the circuitry underpinning pain perception. Enhanced understanding of its circuitry in experimental studies in humans has, in recent years, increased the possibility for better optimized pain-relief strategies and the identification of vulnerabilities to postsurgical pain problems. When integrated into the clinical landscape, these experimental findings of brainstem modulation of pain signalling have the potential to contribute to the optimization of pain management and patient care from acute, to chronic, to palliative states.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.