在MINERVA 2.0微流控芯片上的器官装置中概括了人类肠道上皮的特征。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2023-09-19 eCollection Date: 2023-09-01 DOI:10.1063/5.0144862
Francesca Donnaloja, Luca Izzo, Marzia Campanile, Simone Perottoni, Lucia Boeri, Francesca Fanizza, Lorenzo Sardelli, Emanuela Jacchetti, Manuela T Raimondi, Laura Di Rito, Ilaria Craparotta, Marco Bolis, Carmen Giordano, Diego Albani
{"title":"在MINERVA 2.0微流控芯片上的器官装置中概括了人类肠道上皮的特征。","authors":"Francesca Donnaloja,&nbsp;Luca Izzo,&nbsp;Marzia Campanile,&nbsp;Simone Perottoni,&nbsp;Lucia Boeri,&nbsp;Francesca Fanizza,&nbsp;Lorenzo Sardelli,&nbsp;Emanuela Jacchetti,&nbsp;Manuela T Raimondi,&nbsp;Laura Di Rito,&nbsp;Ilaria Craparotta,&nbsp;Marco Bolis,&nbsp;Carmen Giordano,&nbsp;Diego Albani","doi":"10.1063/5.0144862","DOIUrl":null,"url":null,"abstract":"<p><p>We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.\",\"authors\":\"Francesca Donnaloja,&nbsp;Luca Izzo,&nbsp;Marzia Campanile,&nbsp;Simone Perottoni,&nbsp;Lucia Boeri,&nbsp;Francesca Fanizza,&nbsp;Lorenzo Sardelli,&nbsp;Emanuela Jacchetti,&nbsp;Manuela T Raimondi,&nbsp;Laura Di Rito,&nbsp;Ilaria Craparotta,&nbsp;Marco Bolis,&nbsp;Carmen Giordano,&nbsp;Diego Albani\",\"doi\":\"10.1063/5.0144862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0144862\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0144862","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种名为MINERVA 2.0的创新型芯片上的微流体组织设备,该设备可通过光学方式访问并适用于串行连接。在本工作中,我们通过计算建模和生物评估,将MINERVA 2.0评估为芯片上的微流体肠道上皮。我们还在串联配置前驱体中测试了MINERVA 2.0,以解决多器官相互作用的复杂性。一旦在我们的设备中进行灌注培养,人类肠道永生Caco-2上皮细胞能够存活至少7 天,并形成具有可检测的紧密连接的三维层(occludin和zonulin-1阳性)。可测量的跨上皮耐药性和FITC-葡聚糖渗透性调节以及粘蛋白-2的表达支持了功能层的发育。通过RNASeq评估,动态培养产生了特定的转录组谱,在静态和动态条件下共有524个转录物失调(191个上调,333个下调)。总的来说,收集到的结果表明,我们的芯片上多器官微流体模型显示了关键的肠道上皮特征,由于其模块化设计,可能是构建可定制的多器官芯片平台的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.

Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.

Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.

Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.

We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信