用基因调控网络和单细胞动力学量化癌症细胞的可塑性。

Frontiers in network physiology Pub Date : 2023-09-04 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1225736
Sarah M Groves, Vito Quaranta
{"title":"用基因调控网络和单细胞动力学量化癌症细胞的可塑性。","authors":"Sarah M Groves, Vito Quaranta","doi":"10.3389/fnetp.2023.1225736","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1225736"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507267/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.\",\"authors\":\"Sarah M Groves, Vito Quaranta\",\"doi\":\"10.3389/fnetp.2023.1225736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"3 \",\"pages\":\"1225736\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507267/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2023.1225736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1225736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症细胞的表型可塑性可导致肿瘤进展和获得性耐药性过程中复杂的细胞状态动力学。高度可塑的茎状状态可能具有内在的耐药性。此外,对治疗反应的细胞状态动力学允许肿瘤逃避治疗。在这两种情况下,量化塑性对于识别高塑性状态或阐明状态之间的过渡路径至关重要。目前,量化可塑性的方法往往侧重于1)基于系统潜在基因调控网络动力学的准潜力量化;或2)基于单细胞动力学中的轨迹推断或谱系追踪的细胞效力推断。在这里,我们探索这两种方法和相关的计算工具。然后,我们讨论了每种方法对可塑性指标的影响,以及与癌症治疗策略的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.

Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.

Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.

Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.

Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信