一种用于自动分析大规模非结构化临床电影心脏磁共振数据库的人工智能工具。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-07-13 eCollection Date: 2023-10-01 DOI:10.1093/ehjdh/ztad044
Jorge Mariscal-Harana, Clint Asher, Vittoria Vergani, Maleeha Rizvi, Louise Keehn, Raymond J Kim, Robert M Judd, Steffen E Petersen, Reza Razavi, Andrew P King, Bram Ruijsink, Esther Puyol-Antón
{"title":"一种用于自动分析大规模非结构化临床电影心脏磁共振数据库的人工智能工具。","authors":"Jorge Mariscal-Harana, Clint Asher, Vittoria Vergani, Maleeha Rizvi, Louise Keehn, Raymond J Kim, Robert M Judd, Steffen E Petersen, Reza Razavi, Andrew P King, Bram Ruijsink, Esther Puyol-Antón","doi":"10.1093/ehjdh/ztad044","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases.</p><p><strong>Methods and results: </strong>Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (<i>n</i> = 414) and five external datasets (<i>n</i> = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups.</p><p><strong>Conclusion: </strong>We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"4 5","pages":"370-383"},"PeriodicalIF":3.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/pdf/","citationCount":"0","resultStr":"{\"title\":\"An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases.\",\"authors\":\"Jorge Mariscal-Harana, Clint Asher, Vittoria Vergani, Maleeha Rizvi, Louise Keehn, Raymond J Kim, Robert M Judd, Steffen E Petersen, Reza Razavi, Andrew P King, Bram Ruijsink, Esther Puyol-Antón\",\"doi\":\"10.1093/ehjdh/ztad044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases.</p><p><strong>Methods and results: </strong>Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (<i>n</i> = 414) and five external datasets (<i>n</i> = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups.</p><p><strong>Conclusion: </strong>We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"4 5\",\"pages\":\"370-383\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:人工智能(AI)技术已被提出用于自动分析短轴(SAX)电影心脏磁共振(CMR),但不存在用于自动分析大型(非结构化)临床CMR数据集的CMR分析工具。我们开发并验证了一种强大的人工智能工具,用于在大型临床数据库中从SAX电影CMR开始到结束自动量化心脏功能。方法和结果:我们处理和分析CMR数据库的流程包括识别正确数据的自动化步骤、稳健的图像预处理、SAX CMR双心室分割和功能生物标志物估计的AI算法,以及检测和纠正错误的自动化分析后质量控制。分割算法在来自两家NHS医院的2793次CMR扫描上进行了训练,并在该数据集(n=414)和五个外部数据集(n=6888)的其他病例上进行了验证,包括使用所有主要供应商的CMR扫描仪在12个不同中心获得的一系列疾病患者的扫描。心脏生物标志物的中位绝对误差在观察者间变异范围内:结论:我们表明,我们提出的工具结合了图像预处理步骤、在大规模多领域CMR数据集上训练的领域可推广人工智能算法和质量控制步骤,允许对来自多个中心、供应商、,以及心脏病。这使得我们的工具能够在大型多中心数据库的全自动处理中进行翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases.

An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases.

An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases.

An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases.

Aims: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases.

Methods and results: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n = 414) and five external datasets (n = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups.

Conclusion: We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信