{"title":"探索噬菌体的潜力及其应用。","authors":"Khushal Khambhati, Gargi Bhattacharjee, Nisarg Gohil, Rupesh Maurya, Vijai Singh","doi":"10.1016/bs.pmbts.2023.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistant microorganisms are significantly increasing due to horizontal gene transfer, mutation and overdose of antibiotics leading to serious health conditions globally. Several multidrug resistant microorganisms have shown resistance to even the last line of antibiotics making it very difficult to treat them. Besides using antibiotics, an alternative approach to treat such resistant bacterial pathogens through the use of bacteriophage (phage) was used in the early 1900s which however declined and vanished after the discovery of antibiotics. In recent times, phage has emerged and gained interest as an alternative approach to antibiotics to treat MDR pathogens. Phage can self-replicate by utilizing cellular machinery of bacterial host by following lytic and lysogenic life cycles and therefore suitable for rapid regeneration. Application of phage for detection of bacterial pathogens, elimination of bacteria, agents for controlling food spoilage, treating human disease and several others entitles phage as a futuristic antibacterial armamentarium.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of phage and their applications.\",\"authors\":\"Khushal Khambhati, Gargi Bhattacharjee, Nisarg Gohil, Rupesh Maurya, Vijai Singh\",\"doi\":\"10.1016/bs.pmbts.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistant microorganisms are significantly increasing due to horizontal gene transfer, mutation and overdose of antibiotics leading to serious health conditions globally. Several multidrug resistant microorganisms have shown resistance to even the last line of antibiotics making it very difficult to treat them. Besides using antibiotics, an alternative approach to treat such resistant bacterial pathogens through the use of bacteriophage (phage) was used in the early 1900s which however declined and vanished after the discovery of antibiotics. In recent times, phage has emerged and gained interest as an alternative approach to antibiotics to treat MDR pathogens. Phage can self-replicate by utilizing cellular machinery of bacterial host by following lytic and lysogenic life cycles and therefore suitable for rapid regeneration. Application of phage for detection of bacterial pathogens, elimination of bacteria, agents for controlling food spoilage, treating human disease and several others entitles phage as a futuristic antibacterial armamentarium.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2023.04.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.04.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Exploring the potential of phage and their applications.
Antibiotic resistant microorganisms are significantly increasing due to horizontal gene transfer, mutation and overdose of antibiotics leading to serious health conditions globally. Several multidrug resistant microorganisms have shown resistance to even the last line of antibiotics making it very difficult to treat them. Besides using antibiotics, an alternative approach to treat such resistant bacterial pathogens through the use of bacteriophage (phage) was used in the early 1900s which however declined and vanished after the discovery of antibiotics. In recent times, phage has emerged and gained interest as an alternative approach to antibiotics to treat MDR pathogens. Phage can self-replicate by utilizing cellular machinery of bacterial host by following lytic and lysogenic life cycles and therefore suitable for rapid regeneration. Application of phage for detection of bacterial pathogens, elimination of bacteria, agents for controlling food spoilage, treating human disease and several others entitles phage as a futuristic antibacterial armamentarium.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.