Marie-Pierre Deiber, Camille Piguet, Cristina Berchio, Christoph M Michel, Nader Perroud, Tomas Ros
{"title":"边缘型人格障碍的静息状态脑电图微观状态和功率谱:一项高密度脑电图研究。","authors":"Marie-Pierre Deiber, Camille Piguet, Cristina Berchio, Christoph M Michel, Nader Perroud, Tomas Ros","doi":"10.1007/s10548-023-01005-3","DOIUrl":null,"url":null,"abstract":"<p><p>Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"397-409"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study.\",\"authors\":\"Marie-Pierre Deiber, Camille Piguet, Cristina Berchio, Christoph M Michel, Nader Perroud, Tomas Ros\",\"doi\":\"10.1007/s10548-023-01005-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\" \",\"pages\":\"397-409\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-023-01005-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-023-01005-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study.
Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.