使用潜在类别分析为基于EHR的国家慢性病监测模型的设计提供信息。

IF 1.8 4区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Chronic Illness Pub Date : 2023-09-01 Epub Date: 2022-05-03 DOI:10.1177/17423953221099043
Laura Nasuti, Bonnie Andrews, Wenjun Li, Jennifer Wiltz, Katherine H Hohman, Miriam Patanian
{"title":"使用潜在类别分析为基于EHR的国家慢性病监测模型的设计提供信息。","authors":"Laura Nasuti, Bonnie Andrews, Wenjun Li, Jennifer Wiltz, Katherine H Hohman, Miriam Patanian","doi":"10.1177/17423953221099043","DOIUrl":null,"url":null,"abstract":"<p><p>The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot electronic health record (EHR) surveillance system capable of providing national chronic disease estimates. To strategically engage partner sites, MENDS conducted a latent class analysis (LCA) and grouped states by similarities in socioeconomics, demographics, chronic disease and behavioral risk factor prevalence, health outcomes, and health insurance coverage. Three latent classes of states were identified, which inform the recruitment of additional partner sites in conjunction with additional factors (e.g. partner site capacity and data availability, information technology infrastructure). This methodology can be used to inform other public health surveillance modernization efforts that leverage timely EHR data to address gaps, use existing technology, and advance surveillance.</p>","PeriodicalId":48530,"journal":{"name":"Chronic Illness","volume":"19 3","pages":"675-680"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/0f/10.1177_17423953221099043.PMC10515457.pdf","citationCount":"0","resultStr":"{\"title\":\"Using latent class analysis to inform the design of an EHR-based national chronic disease surveillance model.\",\"authors\":\"Laura Nasuti, Bonnie Andrews, Wenjun Li, Jennifer Wiltz, Katherine H Hohman, Miriam Patanian\",\"doi\":\"10.1177/17423953221099043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot electronic health record (EHR) surveillance system capable of providing national chronic disease estimates. To strategically engage partner sites, MENDS conducted a latent class analysis (LCA) and grouped states by similarities in socioeconomics, demographics, chronic disease and behavioral risk factor prevalence, health outcomes, and health insurance coverage. Three latent classes of states were identified, which inform the recruitment of additional partner sites in conjunction with additional factors (e.g. partner site capacity and data availability, information technology infrastructure). This methodology can be used to inform other public health surveillance modernization efforts that leverage timely EHR data to address gaps, use existing technology, and advance surveillance.</p>\",\"PeriodicalId\":48530,\"journal\":{\"name\":\"Chronic Illness\",\"volume\":\"19 3\",\"pages\":\"675-680\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/0f/10.1177_17423953221099043.PMC10515457.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronic Illness\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17423953221099043\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronic Illness","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17423953221099043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

基于多州EHR的疾病监测网络(MENDS)开发了一个试点电子健康记录(EHR)监测系统,能够提供全国慢性病估计。为了战略性地吸引合作伙伴,MENDS进行了潜在类别分析(LCA),并根据社会经济、人口统计、慢性病和行为风险因素流行率、健康结果和医疗保险覆盖范围的相似性对各州进行了分组。确定了三类潜在的州,这些州结合其他因素(如合作伙伴网站的能力和数据可用性、信息技术基础设施)为招聘更多的合作伙伴网站提供了信息。该方法可用于为其他公共卫生监测现代化工作提供信息,这些工作利用及时的EHR数据来弥补差距,使用现有技术,并推进监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using latent class analysis to inform the design of an EHR-based national chronic disease surveillance model.

The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot electronic health record (EHR) surveillance system capable of providing national chronic disease estimates. To strategically engage partner sites, MENDS conducted a latent class analysis (LCA) and grouped states by similarities in socioeconomics, demographics, chronic disease and behavioral risk factor prevalence, health outcomes, and health insurance coverage. Three latent classes of states were identified, which inform the recruitment of additional partner sites in conjunction with additional factors (e.g. partner site capacity and data availability, information technology infrastructure). This methodology can be used to inform other public health surveillance modernization efforts that leverage timely EHR data to address gaps, use existing technology, and advance surveillance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chronic Illness
Chronic Illness Multiple-
CiteScore
3.80
自引率
0.00%
发文量
38
期刊介绍: Chronic illnesses are prolonged, do not resolve spontaneously, and are rarely completely cured. The most common are cardiovascular diseases (hypertension, coronary artery disease, stroke and heart failure), the arthritides, asthma and chronic obstructive pulmonary disease, diabetes and epilepsy. There is increasing evidence that mental illnesses such as depression are best understood as chronic health problems. HIV/AIDS has become a chronic condition in those countries where effective medication is available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信