Xiaohong Yao, Shuaibin Wang, Zupeng Wang, Dawei Li, Quan Jiang, Qiong Zhang, Lei Gao, Caihong Zhong, Hongwen Huang, Yifei Liu
{"title":"一种野生猕猴桃的基因组测序及比较分析。","authors":"Xiaohong Yao, Shuaibin Wang, Zupeng Wang, Dawei Li, Quan Jiang, Qiong Zhang, Lei Gao, Caihong Zhong, Hongwen Huang, Yifei Liu","doi":"10.1186/s43897-022-00034-z","DOIUrl":null,"url":null,"abstract":"<p><p>The current kiwifruit industry is mainly based on the cultivars derived from the species Actinidia chinensis (Ac) which may bring risks such as canker disease. Introgression of desired traits from wild relatives is an important method for improving kiwifruit cultivars. Actinidia eriantha (Ae) is a particularly important taxon used for hybridization or introgressive breeding of new kiwifruit cultivars because of its valued species-specific traits. Here, we assembled a chromosome-scale high-quality genome of a Ae sample which was directly collected from its wild populations. Our analysis revealed that 41.3% of the genome consists of repetitive elements, comparable to the percentage in Ac and Ae cultivar \"White\" genomes. The genomic structural variation, including the presence/absence-variation (PAV) of genes, is distinct between Ae and Ac, despite both sharing the same two kiwifruit-specific whole genome duplication (WGD) events. This suggests that a post-WGD divergence mechanism occurred during their evolution. We further investigated genes involved in ascorbic acid biosynthesis and disease-resistance of Ae, and we found introgressive genome could contribute to the complex relationship between Ae and other representative kiwifruit taxa. Collectively, the Ae genome offers valuable genetic resource to accelerate kiwifruit breeding applications.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"13"},"PeriodicalIF":10.6000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515239/pdf/","citationCount":"8","resultStr":"{\"title\":\"The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha.\",\"authors\":\"Xiaohong Yao, Shuaibin Wang, Zupeng Wang, Dawei Li, Quan Jiang, Qiong Zhang, Lei Gao, Caihong Zhong, Hongwen Huang, Yifei Liu\",\"doi\":\"10.1186/s43897-022-00034-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current kiwifruit industry is mainly based on the cultivars derived from the species Actinidia chinensis (Ac) which may bring risks such as canker disease. Introgression of desired traits from wild relatives is an important method for improving kiwifruit cultivars. Actinidia eriantha (Ae) is a particularly important taxon used for hybridization or introgressive breeding of new kiwifruit cultivars because of its valued species-specific traits. Here, we assembled a chromosome-scale high-quality genome of a Ae sample which was directly collected from its wild populations. Our analysis revealed that 41.3% of the genome consists of repetitive elements, comparable to the percentage in Ac and Ae cultivar \\\"White\\\" genomes. The genomic structural variation, including the presence/absence-variation (PAV) of genes, is distinct between Ae and Ac, despite both sharing the same two kiwifruit-specific whole genome duplication (WGD) events. This suggests that a post-WGD divergence mechanism occurred during their evolution. We further investigated genes involved in ascorbic acid biosynthesis and disease-resistance of Ae, and we found introgressive genome could contribute to the complex relationship between Ae and other representative kiwifruit taxa. Collectively, the Ae genome offers valuable genetic resource to accelerate kiwifruit breeding applications.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"2 1\",\"pages\":\"13\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515239/pdf/\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-022-00034-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-022-00034-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha.
The current kiwifruit industry is mainly based on the cultivars derived from the species Actinidia chinensis (Ac) which may bring risks such as canker disease. Introgression of desired traits from wild relatives is an important method for improving kiwifruit cultivars. Actinidia eriantha (Ae) is a particularly important taxon used for hybridization or introgressive breeding of new kiwifruit cultivars because of its valued species-specific traits. Here, we assembled a chromosome-scale high-quality genome of a Ae sample which was directly collected from its wild populations. Our analysis revealed that 41.3% of the genome consists of repetitive elements, comparable to the percentage in Ac and Ae cultivar "White" genomes. The genomic structural variation, including the presence/absence-variation (PAV) of genes, is distinct between Ae and Ac, despite both sharing the same two kiwifruit-specific whole genome duplication (WGD) events. This suggests that a post-WGD divergence mechanism occurred during their evolution. We further investigated genes involved in ascorbic acid biosynthesis and disease-resistance of Ae, and we found introgressive genome could contribute to the complex relationship between Ae and other representative kiwifruit taxa. Collectively, the Ae genome offers valuable genetic resource to accelerate kiwifruit breeding applications.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.