Adriano S. Santos, Ester S. Ramos, Vera L. S. Valente-Gaiesky, Fábio de Melo Sene, Maura H. Manfrin
{"title":"亲仙人掌果蝇发育过程中基因组差异甲基化的证据。","authors":"Adriano S. Santos, Ester S. Ramos, Vera L. S. Valente-Gaiesky, Fábio de Melo Sene, Maura H. Manfrin","doi":"10.1002/dvg.23554","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>DNA methylation with 5-methylcytosine (5mC) has been reported in the genome of several eukaryotes, with marked differences between vertebrates and invertebrates. DNA methylation is poorly understood as its role in evolution in insects. <i>Drosophila gouveai</i> (cluster <i>Drosophila buzzatii</i>) presents larvae that develop obligatorily in necrotic tissues of cacti in nature, with the distribution of populations in South America, and plasticity of phenotypes in insect–plant interaction. We characterize organisms at developmental stages and analyze variations at multiple methylation-sensitive <i>loci</i> in pupae, and adult flies using methylation sensitive amplification polymorphism. We obtained 326 <i>loci</i> with CCGG targets in the genome of <i>D. gouveai</i>. Genomic regions with molecular lengths from 100 to 700 pb were most informative about methylation states. Multiple <i>loci</i> show differences in methylation-sensitive sites (MSL) concerning developmental stages, such as in pupae (MSL = 40), female reproductive tissue (MSL = 76), and male reproductive tissues (MSL = 58). Our results are the first evidence of genome-wide methylation in <i>D. gouveai</i> organisms.</p>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidences of differential methylation in the genome during development in the cactophilic Drosophila species\",\"authors\":\"Adriano S. Santos, Ester S. Ramos, Vera L. S. Valente-Gaiesky, Fábio de Melo Sene, Maura H. Manfrin\",\"doi\":\"10.1002/dvg.23554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>DNA methylation with 5-methylcytosine (5mC) has been reported in the genome of several eukaryotes, with marked differences between vertebrates and invertebrates. DNA methylation is poorly understood as its role in evolution in insects. <i>Drosophila gouveai</i> (cluster <i>Drosophila buzzatii</i>) presents larvae that develop obligatorily in necrotic tissues of cacti in nature, with the distribution of populations in South America, and plasticity of phenotypes in insect–plant interaction. We characterize organisms at developmental stages and analyze variations at multiple methylation-sensitive <i>loci</i> in pupae, and adult flies using methylation sensitive amplification polymorphism. We obtained 326 <i>loci</i> with CCGG targets in the genome of <i>D. gouveai</i>. Genomic regions with molecular lengths from 100 to 700 pb were most informative about methylation states. Multiple <i>loci</i> show differences in methylation-sensitive sites (MSL) concerning developmental stages, such as in pupae (MSL = 40), female reproductive tissue (MSL = 76), and male reproductive tissues (MSL = 58). Our results are the first evidence of genome-wide methylation in <i>D. gouveai</i> organisms.</p>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evidences of differential methylation in the genome during development in the cactophilic Drosophila species
DNA methylation with 5-methylcytosine (5mC) has been reported in the genome of several eukaryotes, with marked differences between vertebrates and invertebrates. DNA methylation is poorly understood as its role in evolution in insects. Drosophila gouveai (cluster Drosophila buzzatii) presents larvae that develop obligatorily in necrotic tissues of cacti in nature, with the distribution of populations in South America, and plasticity of phenotypes in insect–plant interaction. We characterize organisms at developmental stages and analyze variations at multiple methylation-sensitive loci in pupae, and adult flies using methylation sensitive amplification polymorphism. We obtained 326 loci with CCGG targets in the genome of D. gouveai. Genomic regions with molecular lengths from 100 to 700 pb were most informative about methylation states. Multiple loci show differences in methylation-sensitive sites (MSL) concerning developmental stages, such as in pupae (MSL = 40), female reproductive tissue (MSL = 76), and male reproductive tissues (MSL = 58). Our results are the first evidence of genome-wide methylation in D. gouveai organisms.