{"title":"基于三维肺MRI的弹性配准算法在特发性肺纤维化严重程度定量评估中的应用。","authors":"Xiaoyan Yang, Pengxin Yu, Wenqing Xu, Haishuang Sun, Jianghui Duan, Yueyin Han, Lili Zhu, Bingbing Xie, Jing Geng, Sa Luo, Shiyao Wang, Yanhong Ren, Rongguo Zhang, Min Liu, Huaping Dai, Chen Wang","doi":"10.1097/RTI.0000000000000735","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients.</p><p><strong>Material and methods: </strong>Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed.</p><p><strong>Results: </strong>The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048).</p><p><strong>Conclusion: </strong>Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/aa/rti-38-358.PMC10597429.pdf","citationCount":"0","resultStr":"{\"title\":\"Elastic Registration Algorithm Based on Three-dimensional Pulmonary MRI in Quantitative Assessment of Severity of Idiopathic Pulmonary Fibrosis.\",\"authors\":\"Xiaoyan Yang, Pengxin Yu, Wenqing Xu, Haishuang Sun, Jianghui Duan, Yueyin Han, Lili Zhu, Bingbing Xie, Jing Geng, Sa Luo, Shiyao Wang, Yanhong Ren, Rongguo Zhang, Min Liu, Huaping Dai, Chen Wang\",\"doi\":\"10.1097/RTI.0000000000000735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients.</p><p><strong>Material and methods: </strong>Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed.</p><p><strong>Results: </strong>The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048).</p><p><strong>Conclusion: </strong>Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/aa/rti-38-358.PMC10597429.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000735\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000735","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Elastic Registration Algorithm Based on Three-dimensional Pulmonary MRI in Quantitative Assessment of Severity of Idiopathic Pulmonary Fibrosis.
Purpose: To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients.
Material and methods: Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed.
Results: The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048).
Conclusion: Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.