Merlin Engelke, Christian Martin Brieske, Vicky Parmar, Nils Flaschel, Anisa Kureishi, Rene Hosch, Sven Koitka, Cynthia Sabrina Schmidt, Peter A Horn, Felix Nensa
{"title":"使用机器学习预测大型三级护理医院的个体患者血小板需求。","authors":"Merlin Engelke, Christian Martin Brieske, Vicky Parmar, Nils Flaschel, Anisa Kureishi, Rene Hosch, Sven Koitka, Cynthia Sabrina Schmidt, Peter A Horn, Felix Nensa","doi":"10.1159/000528428","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An increasing shortage of donor blood is expected, considering the demographic change in Germany. Due to the short shelf life and varying daily fluctuations in consumption, the storage of platelet concentrates (PCs) becomes challenging. This emphasizes the need for reliable prediction of needed PCs for the blood bank inventories. Therefore, the objective of this study was to evaluate multimodal data from multiple source systems within a hospital to predict the number of platelet transfusions in 3 days on a per-patient level.</p><p><strong>Methods: </strong>Data were collected from 25,190 (42% female and 58% male) patients between 2017 and 2021. For each patient, the number of received PCs, platelet count blood tests, drugs causing thrombocytopenia, acute platelet diseases, procedures, age, gender, and the period of a patient's hospital stay were collected. Two models were trained on samples using a sliding window of 7 days as input and a day 3 target. The model predicts whether a patient will be transfused 3 days in the future. The model was trained with an excessive hyperparameter search using patient-level repeated 5-fold cross-validation to optimize the average macro F2-score.</p><p><strong>Results: </strong>The trained models were tested on 5,022 unique patients. The best-performing model has a specificity of 0.99, a sensitivity of 0.37, an area under the precision-recall curve score of 0.45, an MCC score of 0.43, and an F1-score of 0.43. However, the model does not generalize well for cases when the need for a platelet transfusion is recognized.</p><p><strong>Conclusion: </strong>A patient AI-based platelet forecast could improve logistics management and reduce blood product waste. In this study, we build the first model to predict patient individual platelet demand. To the best of our knowledge, we are the first to introduce this approach. Our model predicts the need for platelet units for 3 days in the future. While sensitivity underperforms, specificity performs reliably. The model may be of clinical use as a pretest for potential patients needing a platelet transfusion within the next 3 days. As sensitivity needs to be improved, further studies should introduce deep learning and wider patient characterization to the methodological multimodal, multisource data approach. Furthermore, a hospital-wide consumption of PCs could be derived from individual predictions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/77/tmh-0050-0277.PMC10521242.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting Individual Patient Platelet Demand in a Large Tertiary Care Hospital Using Machine Learning.\",\"authors\":\"Merlin Engelke, Christian Martin Brieske, Vicky Parmar, Nils Flaschel, Anisa Kureishi, Rene Hosch, Sven Koitka, Cynthia Sabrina Schmidt, Peter A Horn, Felix Nensa\",\"doi\":\"10.1159/000528428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>An increasing shortage of donor blood is expected, considering the demographic change in Germany. Due to the short shelf life and varying daily fluctuations in consumption, the storage of platelet concentrates (PCs) becomes challenging. This emphasizes the need for reliable prediction of needed PCs for the blood bank inventories. Therefore, the objective of this study was to evaluate multimodal data from multiple source systems within a hospital to predict the number of platelet transfusions in 3 days on a per-patient level.</p><p><strong>Methods: </strong>Data were collected from 25,190 (42% female and 58% male) patients between 2017 and 2021. For each patient, the number of received PCs, platelet count blood tests, drugs causing thrombocytopenia, acute platelet diseases, procedures, age, gender, and the period of a patient's hospital stay were collected. Two models were trained on samples using a sliding window of 7 days as input and a day 3 target. The model predicts whether a patient will be transfused 3 days in the future. The model was trained with an excessive hyperparameter search using patient-level repeated 5-fold cross-validation to optimize the average macro F2-score.</p><p><strong>Results: </strong>The trained models were tested on 5,022 unique patients. The best-performing model has a specificity of 0.99, a sensitivity of 0.37, an area under the precision-recall curve score of 0.45, an MCC score of 0.43, and an F1-score of 0.43. However, the model does not generalize well for cases when the need for a platelet transfusion is recognized.</p><p><strong>Conclusion: </strong>A patient AI-based platelet forecast could improve logistics management and reduce blood product waste. In this study, we build the first model to predict patient individual platelet demand. To the best of our knowledge, we are the first to introduce this approach. Our model predicts the need for platelet units for 3 days in the future. While sensitivity underperforms, specificity performs reliably. The model may be of clinical use as a pretest for potential patients needing a platelet transfusion within the next 3 days. As sensitivity needs to be improved, further studies should introduce deep learning and wider patient characterization to the methodological multimodal, multisource data approach. Furthermore, a hospital-wide consumption of PCs could be derived from individual predictions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/77/tmh-0050-0277.PMC10521242.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000528428\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528428","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting Individual Patient Platelet Demand in a Large Tertiary Care Hospital Using Machine Learning.
Introduction: An increasing shortage of donor blood is expected, considering the demographic change in Germany. Due to the short shelf life and varying daily fluctuations in consumption, the storage of platelet concentrates (PCs) becomes challenging. This emphasizes the need for reliable prediction of needed PCs for the blood bank inventories. Therefore, the objective of this study was to evaluate multimodal data from multiple source systems within a hospital to predict the number of platelet transfusions in 3 days on a per-patient level.
Methods: Data were collected from 25,190 (42% female and 58% male) patients between 2017 and 2021. For each patient, the number of received PCs, platelet count blood tests, drugs causing thrombocytopenia, acute platelet diseases, procedures, age, gender, and the period of a patient's hospital stay were collected. Two models were trained on samples using a sliding window of 7 days as input and a day 3 target. The model predicts whether a patient will be transfused 3 days in the future. The model was trained with an excessive hyperparameter search using patient-level repeated 5-fold cross-validation to optimize the average macro F2-score.
Results: The trained models were tested on 5,022 unique patients. The best-performing model has a specificity of 0.99, a sensitivity of 0.37, an area under the precision-recall curve score of 0.45, an MCC score of 0.43, and an F1-score of 0.43. However, the model does not generalize well for cases when the need for a platelet transfusion is recognized.
Conclusion: A patient AI-based platelet forecast could improve logistics management and reduce blood product waste. In this study, we build the first model to predict patient individual platelet demand. To the best of our knowledge, we are the first to introduce this approach. Our model predicts the need for platelet units for 3 days in the future. While sensitivity underperforms, specificity performs reliably. The model may be of clinical use as a pretest for potential patients needing a platelet transfusion within the next 3 days. As sensitivity needs to be improved, further studies should introduce deep learning and wider patient characterization to the methodological multimodal, multisource data approach. Furthermore, a hospital-wide consumption of PCs could be derived from individual predictions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.