{"title":"代谢工程和大肠杆菌共培养物的优化用于新合成耿花素。","authors":"Nguyen Huy Thuan, Vinay Bharadwaj Tatipamula, Nguyen Thanh Trung, Nguyen Van Giang","doi":"10.1093/jimb/kuad030","DOIUrl":null,"url":null,"abstract":"<p><p>Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest. This paper described recombinant Escherichia coli-based co-culture engineering that was reconstructed for the de novo production of genkwanin from d-glucose. The artificial genkwanin biosynthetic chain was divided into 2 modules in which the upstream strain contained the genes for synthesizing p-coumaric acid from d-glucose, and the downstream module contained a gene cluster that produced the precursor apigenin and the final product, genkwanin. The Box-Behnken design, a response surface methodology, was used to empirically model the production of genkwanin and optimize its productivity. As a result, the application of the designed co-culture improved the genkwanin production by 48.8 ± 1.3 mg/L or 1.7-fold compared to the monoculture. In addition, the scale-up of genkwanin bioproduction by a bioreactor resulted in 68.5 ± 1.9 mg/L at a 48 hr time point. The combination of metabolic engineering and fermentation technology was therefore a very efficient and applicable approach to enhance the production of other bioactive compounds.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/49/kuad030.PMC10565888.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering and optimization of Escherichia coli co-culture for the de novo synthesis of genkwanin.\",\"authors\":\"Nguyen Huy Thuan, Vinay Bharadwaj Tatipamula, Nguyen Thanh Trung, Nguyen Van Giang\",\"doi\":\"10.1093/jimb/kuad030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest. This paper described recombinant Escherichia coli-based co-culture engineering that was reconstructed for the de novo production of genkwanin from d-glucose. The artificial genkwanin biosynthetic chain was divided into 2 modules in which the upstream strain contained the genes for synthesizing p-coumaric acid from d-glucose, and the downstream module contained a gene cluster that produced the precursor apigenin and the final product, genkwanin. The Box-Behnken design, a response surface methodology, was used to empirically model the production of genkwanin and optimize its productivity. As a result, the application of the designed co-culture improved the genkwanin production by 48.8 ± 1.3 mg/L or 1.7-fold compared to the monoculture. In addition, the scale-up of genkwanin bioproduction by a bioreactor resulted in 68.5 ± 1.9 mg/L at a 48 hr time point. The combination of metabolic engineering and fermentation technology was therefore a very efficient and applicable approach to enhance the production of other bioactive compounds.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/49/kuad030.PMC10565888.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic engineering and optimization of Escherichia coli co-culture for the de novo synthesis of genkwanin.
Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest. This paper described recombinant Escherichia coli-based co-culture engineering that was reconstructed for the de novo production of genkwanin from d-glucose. The artificial genkwanin biosynthetic chain was divided into 2 modules in which the upstream strain contained the genes for synthesizing p-coumaric acid from d-glucose, and the downstream module contained a gene cluster that produced the precursor apigenin and the final product, genkwanin. The Box-Behnken design, a response surface methodology, was used to empirically model the production of genkwanin and optimize its productivity. As a result, the application of the designed co-culture improved the genkwanin production by 48.8 ± 1.3 mg/L or 1.7-fold compared to the monoculture. In addition, the scale-up of genkwanin bioproduction by a bioreactor resulted in 68.5 ± 1.9 mg/L at a 48 hr time point. The combination of metabolic engineering and fermentation technology was therefore a very efficient and applicable approach to enhance the production of other bioactive compounds.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology