Minoo Bagheri, Andrei Bombin, Mingjian Shi, Venkatesh L Murthy, Ravi Shah, Jonathan D Mosley, Jane F Ferguson
{"title":"临床生物库中基于基因型的“虚拟”代谢组学确定了新的代谢产物与疾病的关联。","authors":"Minoo Bagheri, Andrei Bombin, Mingjian Shi, Venkatesh L Murthy, Ravi Shah, Jonathan D Mosley, Jane F Ferguson","doi":"10.21203/rs.3.rs-3222588/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based \"virtual\" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.</p>","PeriodicalId":21039,"journal":{"name":"Research Square","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543429/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genotype-based \\\"virtual\\\" metabolomics in a clinical biobank identifies novel metabolite-disease associations.\",\"authors\":\"Minoo Bagheri, Andrei Bombin, Mingjian Shi, Venkatesh L Murthy, Ravi Shah, Jonathan D Mosley, Jane F Ferguson\",\"doi\":\"10.21203/rs.3.rs-3222588/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based \\\"virtual\\\" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.</p>\",\"PeriodicalId\":21039,\"journal\":{\"name\":\"Research Square\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-3222588/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3222588/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genotype-based "virtual" metabolomics in a clinical biobank identifies novel metabolite-disease associations.
Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based "virtual" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.