B Baali, L Kirane-Amrani, L Tichati, R Soual, K Ouali
{"title":"喹啉酸铜杀菌剂暴露大鼠脂质过氧化及主要抗氧化标志物的变化。","authors":"B Baali, L Kirane-Amrani, L Tichati, R Soual, K Ouali","doi":"10.1177/07482337231203075","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the toxic effects of sub-chronic exposure to copper quinolate (CuQ) fungicide on liver and kidney function. Twenty-four adult male Wistar rats were equally divided into a control group, and three treated groups received, respectively, by oral gavage, three increasing doses of CuQ: 47; 67.1; and 94 mg/kg b.w corresponding, respectively, LD<sub>50</sub>/100, LD<sub>50</sub>/70, and LD<sub>50</sub>/50 daily for 8 weeks. CuQ resulted in a significant increase in the serum enzymatic activity of aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the serum levels of urea, creatinine, uric acid, and malondialdehyde, along with a marked decrease in alanine aminotransferase (ALT) activity, and the contents of total protein and albumin compared to those of the control group. Furthermore, glutathione content and the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx) decreased significantly in a dose-dependent manner with respect to CuQ. The adverse effects of CuO were supported by the histopathological evaluations of liver and kidney tissues. Conclusively, sub-chronic CuQ exposure was shown to induce kidney and liver oxidative damage and dysfunction.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"664-678"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid peroxidation and changes in major antioxidant markers in copper quinolate fungicide-exposed rats.\",\"authors\":\"B Baali, L Kirane-Amrani, L Tichati, R Soual, K Ouali\",\"doi\":\"10.1177/07482337231203075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study investigated the toxic effects of sub-chronic exposure to copper quinolate (CuQ) fungicide on liver and kidney function. Twenty-four adult male Wistar rats were equally divided into a control group, and three treated groups received, respectively, by oral gavage, three increasing doses of CuQ: 47; 67.1; and 94 mg/kg b.w corresponding, respectively, LD<sub>50</sub>/100, LD<sub>50</sub>/70, and LD<sub>50</sub>/50 daily for 8 weeks. CuQ resulted in a significant increase in the serum enzymatic activity of aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the serum levels of urea, creatinine, uric acid, and malondialdehyde, along with a marked decrease in alanine aminotransferase (ALT) activity, and the contents of total protein and albumin compared to those of the control group. Furthermore, glutathione content and the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx) decreased significantly in a dose-dependent manner with respect to CuQ. The adverse effects of CuO were supported by the histopathological evaluations of liver and kidney tissues. Conclusively, sub-chronic CuQ exposure was shown to induce kidney and liver oxidative damage and dysfunction.</p>\",\"PeriodicalId\":23171,\"journal\":{\"name\":\"Toxicology and Industrial Health\",\"volume\":\" \",\"pages\":\"664-678\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and Industrial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07482337231203075\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337231203075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Lipid peroxidation and changes in major antioxidant markers in copper quinolate fungicide-exposed rats.
The present study investigated the toxic effects of sub-chronic exposure to copper quinolate (CuQ) fungicide on liver and kidney function. Twenty-four adult male Wistar rats were equally divided into a control group, and three treated groups received, respectively, by oral gavage, three increasing doses of CuQ: 47; 67.1; and 94 mg/kg b.w corresponding, respectively, LD50/100, LD50/70, and LD50/50 daily for 8 weeks. CuQ resulted in a significant increase in the serum enzymatic activity of aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the serum levels of urea, creatinine, uric acid, and malondialdehyde, along with a marked decrease in alanine aminotransferase (ALT) activity, and the contents of total protein and albumin compared to those of the control group. Furthermore, glutathione content and the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx) decreased significantly in a dose-dependent manner with respect to CuQ. The adverse effects of CuO were supported by the histopathological evaluations of liver and kidney tissues. Conclusively, sub-chronic CuQ exposure was shown to induce kidney and liver oxidative damage and dysfunction.
期刊介绍:
Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.