用于药物输送车辆的噬菌体。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Mohit Kumar, Piyush Parkhey, Santosh Kumar Mishra, Prabir Kumar Paul, Avinash Singh, Vijai Singh
{"title":"用于药物输送车辆的噬菌体。","authors":"Mohit Kumar,&nbsp;Piyush Parkhey,&nbsp;Santosh Kumar Mishra,&nbsp;Prabir Kumar Paul,&nbsp;Avinash Singh,&nbsp;Vijai Singh","doi":"10.1016/bs.pmbts.2023.04.008","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phage for drug delivery vehicles.\",\"authors\":\"Mohit Kumar,&nbsp;Piyush Parkhey,&nbsp;Santosh Kumar Mishra,&nbsp;Prabir Kumar Paul,&nbsp;Avinash Singh,&nbsp;Vijai Singh\",\"doi\":\"10.1016/bs.pmbts.2023.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2023.04.008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.04.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

病毒作为基因的天然载体,已被广泛用作药物递送系统。然而,常用的真核病毒,如腺病毒、逆转录病毒和慢病毒,除了有效地靶向细胞外,还可以刺激免疫反应或破坏导致癌症的肿瘤抑制基因。因此,科学界对探索其他更安全、同样有效的替代药物越来越感兴趣。在这种情况下,噬菌体一直是一种高效、可靠和更安全的选择。新的噬菌体依赖性技术引领了肽库的建立,并为识别特定配体的能力和靶向提供了途径。噬菌体与无机复合物的杂交可能是构建携带生物无机载体的合适策略。在本章中,我们试图介绍可作为药物递送载体的噬菌体物种的主要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phage for drug delivery vehicles.

Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信