Hiroyuki Doi, Jun Atsumi, David Baratz, Yohei Miyamoto
{"title":"TRK-250,一种新的基于siRNA的寡核苷酸,在特发性肺纤维化患者中的I期研究。","authors":"Hiroyuki Doi, Jun Atsumi, David Baratz, Yohei Miyamoto","doi":"10.1089/jamp.2023.0014","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> TRK-250 is a novel single-stranded oligonucleotide carrying a human Transforming growth factor-beta 1-targeting siRNA motif tethered by two proline linkers. Nonclinical studies have shown that TRK-250 may have potency to prevent the progression of pulmonary fibrosis. Herein, a phase I study was conducted to investigate the safety and pharmacokinetics (PKs) of TRK-250 in patients with idiopathic pulmonary fibrosis (IPF). <b><i>Method:</i></b> In the phase I study, 34 IPF patients were partially randomized to receive a placebo or TRK-250 in 4 single doses of 2, 10, 30, and 60 mg or multiple rising doses of 10, 30, and 60 mg once per week for 4 weeks by oral inhalation. For both the single- and multiple-dose studies, the primary endpoint was safety, and the secondary endpoint was PKs. <b><i>Result:</i></b> In all IPF patients who orally inhaled TRK-250, no significant drug-related adverse events (AEs) were observed. The AEs were mild or moderate, except for one severe case with acute exacerbation. One of the more common AEs was coughing. One patient discontinued treatment before the last dose because of coughing. There were no medically important findings related to safety endpoints based on clinical laboratory data (clinical chemistry, hematology, or urinalysis), vital signs data, electrocardiogram data, physical examination findings, pulse oximetry data, spirometry data, or diffusing capacity of the lung for carbon monoxide data. All the bioanalytical results of PKs in the blood were below the lower limit of quantification. <b><i>Conclusions:</i></b> Both the single and multiple doses of TRK-250 were safe and well tolerated in this first study done in IPF patients. Furthermore, TRK-250 was not detected in the systemic circulation following inhalation, indicating low or virtually nonexistent systemic exposure. This study is registered at ClinicalTrials.gov with identifier number NCT03727802.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"300-308"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phase I Study of TRK-250, a Novel siRNA-Based Oligonucleotide, in Patients with Idiopathic Pulmonary Fibrosis.\",\"authors\":\"Hiroyuki Doi, Jun Atsumi, David Baratz, Yohei Miyamoto\",\"doi\":\"10.1089/jamp.2023.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Purpose:</i></b> TRK-250 is a novel single-stranded oligonucleotide carrying a human Transforming growth factor-beta 1-targeting siRNA motif tethered by two proline linkers. Nonclinical studies have shown that TRK-250 may have potency to prevent the progression of pulmonary fibrosis. Herein, a phase I study was conducted to investigate the safety and pharmacokinetics (PKs) of TRK-250 in patients with idiopathic pulmonary fibrosis (IPF). <b><i>Method:</i></b> In the phase I study, 34 IPF patients were partially randomized to receive a placebo or TRK-250 in 4 single doses of 2, 10, 30, and 60 mg or multiple rising doses of 10, 30, and 60 mg once per week for 4 weeks by oral inhalation. For both the single- and multiple-dose studies, the primary endpoint was safety, and the secondary endpoint was PKs. <b><i>Result:</i></b> In all IPF patients who orally inhaled TRK-250, no significant drug-related adverse events (AEs) were observed. The AEs were mild or moderate, except for one severe case with acute exacerbation. One of the more common AEs was coughing. One patient discontinued treatment before the last dose because of coughing. There were no medically important findings related to safety endpoints based on clinical laboratory data (clinical chemistry, hematology, or urinalysis), vital signs data, electrocardiogram data, physical examination findings, pulse oximetry data, spirometry data, or diffusing capacity of the lung for carbon monoxide data. All the bioanalytical results of PKs in the blood were below the lower limit of quantification. <b><i>Conclusions:</i></b> Both the single and multiple doses of TRK-250 were safe and well tolerated in this first study done in IPF patients. Furthermore, TRK-250 was not detected in the systemic circulation following inhalation, indicating low or virtually nonexistent systemic exposure. This study is registered at ClinicalTrials.gov with identifier number NCT03727802.</p>\",\"PeriodicalId\":14940,\"journal\":{\"name\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"volume\":\" \",\"pages\":\"300-308\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jamp.2023.0014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2023.0014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
A Phase I Study of TRK-250, a Novel siRNA-Based Oligonucleotide, in Patients with Idiopathic Pulmonary Fibrosis.
Purpose: TRK-250 is a novel single-stranded oligonucleotide carrying a human Transforming growth factor-beta 1-targeting siRNA motif tethered by two proline linkers. Nonclinical studies have shown that TRK-250 may have potency to prevent the progression of pulmonary fibrosis. Herein, a phase I study was conducted to investigate the safety and pharmacokinetics (PKs) of TRK-250 in patients with idiopathic pulmonary fibrosis (IPF). Method: In the phase I study, 34 IPF patients were partially randomized to receive a placebo or TRK-250 in 4 single doses of 2, 10, 30, and 60 mg or multiple rising doses of 10, 30, and 60 mg once per week for 4 weeks by oral inhalation. For both the single- and multiple-dose studies, the primary endpoint was safety, and the secondary endpoint was PKs. Result: In all IPF patients who orally inhaled TRK-250, no significant drug-related adverse events (AEs) were observed. The AEs were mild or moderate, except for one severe case with acute exacerbation. One of the more common AEs was coughing. One patient discontinued treatment before the last dose because of coughing. There were no medically important findings related to safety endpoints based on clinical laboratory data (clinical chemistry, hematology, or urinalysis), vital signs data, electrocardiogram data, physical examination findings, pulse oximetry data, spirometry data, or diffusing capacity of the lung for carbon monoxide data. All the bioanalytical results of PKs in the blood were below the lower limit of quantification. Conclusions: Both the single and multiple doses of TRK-250 were safe and well tolerated in this first study done in IPF patients. Furthermore, TRK-250 was not detected in the systemic circulation following inhalation, indicating low or virtually nonexistent systemic exposure. This study is registered at ClinicalTrials.gov with identifier number NCT03727802.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.