从心理模式到概念模式:水文地质学领域教学的挑战。

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Groundwater Pub Date : 2023-09-25 DOI:10.1111/gwat.13355
Joaquin Jimenez-Martinez
{"title":"从心理模式到概念模式:水文地质学领域教学的挑战。","authors":"Joaquin Jimenez-Martinez","doi":"10.1111/gwat.13355","DOIUrl":null,"url":null,"abstract":"<p>Field-based learning in hydrogeology enables students to develop their understanding and application of practical methodologies, and to enhance many of the generic skills (e.g., teamwork, problem-solving). However, teaching and learning hydrogeology in general, and especially in the field, presents cognitive difficulties, such as the diversity in student education and experience, the hidden nature of water movement and transport of chemicals, and the preexisting students' mental models of the subsurface, in particular. At any given experimental or teaching site there is only one reality for which lecturers can have an approximate conceptual model, including aquifer(s) geometry and functioning (e.g., flow direction). However, students' preconceptions (i.e., mental model), in some cases misconceptions, influence not only their outcome from the learning strategy designed, but also the conceptual model expression (i.e., flow chart, block diagram, or similar) for the study area or site. In practice, two general “teaching challenges” are identified to enable students' transition from the mental to the conceptual model: (1) identify and dispel any prior misconceptions and (2) show how to go from the partial information to the integration of new information for the development of the conceptual model. The inclusion of specific prior-to-field lessons in the classroom is recommended and in general, done. However, introducing a prior-to-field survey to learn about students' backgrounds, and methodologies for the development and expression of hydrogeological conceptual models and for testing multiple plausible conceptual models will help students transition from the mental to the conceptual model.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"61 6","pages":"768-771"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13355","citationCount":"0","resultStr":"{\"title\":\"From the Mental to the Conceptual Model: The Challenge of Teaching Hydrogeology in the Field\",\"authors\":\"Joaquin Jimenez-Martinez\",\"doi\":\"10.1111/gwat.13355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Field-based learning in hydrogeology enables students to develop their understanding and application of practical methodologies, and to enhance many of the generic skills (e.g., teamwork, problem-solving). However, teaching and learning hydrogeology in general, and especially in the field, presents cognitive difficulties, such as the diversity in student education and experience, the hidden nature of water movement and transport of chemicals, and the preexisting students' mental models of the subsurface, in particular. At any given experimental or teaching site there is only one reality for which lecturers can have an approximate conceptual model, including aquifer(s) geometry and functioning (e.g., flow direction). However, students' preconceptions (i.e., mental model), in some cases misconceptions, influence not only their outcome from the learning strategy designed, but also the conceptual model expression (i.e., flow chart, block diagram, or similar) for the study area or site. In practice, two general “teaching challenges” are identified to enable students' transition from the mental to the conceptual model: (1) identify and dispel any prior misconceptions and (2) show how to go from the partial information to the integration of new information for the development of the conceptual model. The inclusion of specific prior-to-field lessons in the classroom is recommended and in general, done. However, introducing a prior-to-field survey to learn about students' backgrounds, and methodologies for the development and expression of hydrogeological conceptual models and for testing multiple plausible conceptual models will help students transition from the mental to the conceptual model.</p>\",\"PeriodicalId\":12866,\"journal\":{\"name\":\"Groundwater\",\"volume\":\"61 6\",\"pages\":\"768-771\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13355\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13355\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13355","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水文地质学的实地学习使学生能够理解和应用实用方法,并提高许多通用技能(如团队合作、解决问题)。然而,水文地质学的教学和学习,尤其是在该领域,存在认知困难,例如学生教育和经验的多样性,水运动和化学物质运输的隐蔽性,以及预先存在的学生对地下的心理模型。在任何给定的实验或教学场所,只有一个现实,讲师可以对其拥有近似的概念模型,包括含水层的几何形状和功能(例如流动方向)。然而,在某些情况下,学生的先入为主的观念(即心理模型)不仅会影响他们设计的学习策略的结果,还会影响学习区域或地点的概念模型表达(即流程图、框图或类似内容)。在实践中,确定了两个一般的“教学挑战”,以使学生能够从心理模型过渡到概念模型:(1)识别和消除任何先前的误解;(2)展示如何从部分信息到整合新信息,以发展概念模型。建议在课堂上加入具体的现场前课程,一般情况下也会这样做。然而,在实地调查之前引入一项调查,以了解学生的背景,以及水文地质概念模型的开发和表达以及测试多个看似合理的概念模型的方法,将有助于学生从心理模型过渡到概念模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From the Mental to the Conceptual Model: The Challenge of Teaching Hydrogeology in the Field

Field-based learning in hydrogeology enables students to develop their understanding and application of practical methodologies, and to enhance many of the generic skills (e.g., teamwork, problem-solving). However, teaching and learning hydrogeology in general, and especially in the field, presents cognitive difficulties, such as the diversity in student education and experience, the hidden nature of water movement and transport of chemicals, and the preexisting students' mental models of the subsurface, in particular. At any given experimental or teaching site there is only one reality for which lecturers can have an approximate conceptual model, including aquifer(s) geometry and functioning (e.g., flow direction). However, students' preconceptions (i.e., mental model), in some cases misconceptions, influence not only their outcome from the learning strategy designed, but also the conceptual model expression (i.e., flow chart, block diagram, or similar) for the study area or site. In practice, two general “teaching challenges” are identified to enable students' transition from the mental to the conceptual model: (1) identify and dispel any prior misconceptions and (2) show how to go from the partial information to the integration of new information for the development of the conceptual model. The inclusion of specific prior-to-field lessons in the classroom is recommended and in general, done. However, introducing a prior-to-field survey to learn about students' backgrounds, and methodologies for the development and expression of hydrogeological conceptual models and for testing multiple plausible conceptual models will help students transition from the mental to the conceptual model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Groundwater
Groundwater 环境科学-地球科学综合
CiteScore
4.80
自引率
3.80%
发文量
0
审稿时长
12-24 weeks
期刊介绍: Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信