{"title":"纳米塑料暴露对内分泌的干扰作用:系统综述。","authors":"Veruscka Leso, Beatrice Battistini, Ilaria Vetrani, Liberata Reppuccia, Mauro Fedele, Flavia Ruggieri, Beatrice Bocca, Ivo Iavicoli","doi":"10.1177/07482337231203053","DOIUrl":null,"url":null,"abstract":"<p><p>Good mechanical properties and low costs have led to a global expansion of plastic production and use. Unfortunately, much of this material can be released into the environment as a waste product and cleaved into micro- and nanoplastics (NPs) whose impact on the environment and human health is still largely unknown. Considering the growing worldwide awareness on exposure to chemicals that can act as endocrine disruptors, a systematic review was performed to assess the impact of NPs on the endocrine function of in vitro and in vivo models. Although a limited number of investigations is currently available, retrieved findings showed that NPs may induce changes in endocrine system functionality, with evident alterations in reproductive and thyroid hormones and gene expression patterns, also with a trans-generational impact. Nanoplastic size, concentration, and the co-exposure to other endocrine disrupting pollutants may have an influencing role on these effects. Overall, although it is still too early to draw conclusions regarding the human health risks derived from NPs, these preliminary results support the need for further studies employing a wider range of plastic polymer types, concentrations, and time points as well as species and life stages to address a great variety of endocrine outcomes and to achieve a broader and shared consensus on the role of NPs as endocrine disruptors.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"613-629"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The endocrine disrupting effects of nanoplastic exposure: A systematic review.\",\"authors\":\"Veruscka Leso, Beatrice Battistini, Ilaria Vetrani, Liberata Reppuccia, Mauro Fedele, Flavia Ruggieri, Beatrice Bocca, Ivo Iavicoli\",\"doi\":\"10.1177/07482337231203053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Good mechanical properties and low costs have led to a global expansion of plastic production and use. Unfortunately, much of this material can be released into the environment as a waste product and cleaved into micro- and nanoplastics (NPs) whose impact on the environment and human health is still largely unknown. Considering the growing worldwide awareness on exposure to chemicals that can act as endocrine disruptors, a systematic review was performed to assess the impact of NPs on the endocrine function of in vitro and in vivo models. Although a limited number of investigations is currently available, retrieved findings showed that NPs may induce changes in endocrine system functionality, with evident alterations in reproductive and thyroid hormones and gene expression patterns, also with a trans-generational impact. Nanoplastic size, concentration, and the co-exposure to other endocrine disrupting pollutants may have an influencing role on these effects. Overall, although it is still too early to draw conclusions regarding the human health risks derived from NPs, these preliminary results support the need for further studies employing a wider range of plastic polymer types, concentrations, and time points as well as species and life stages to address a great variety of endocrine outcomes and to achieve a broader and shared consensus on the role of NPs as endocrine disruptors.</p>\",\"PeriodicalId\":23171,\"journal\":{\"name\":\"Toxicology and Industrial Health\",\"volume\":\" \",\"pages\":\"613-629\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and Industrial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07482337231203053\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337231203053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
The endocrine disrupting effects of nanoplastic exposure: A systematic review.
Good mechanical properties and low costs have led to a global expansion of plastic production and use. Unfortunately, much of this material can be released into the environment as a waste product and cleaved into micro- and nanoplastics (NPs) whose impact on the environment and human health is still largely unknown. Considering the growing worldwide awareness on exposure to chemicals that can act as endocrine disruptors, a systematic review was performed to assess the impact of NPs on the endocrine function of in vitro and in vivo models. Although a limited number of investigations is currently available, retrieved findings showed that NPs may induce changes in endocrine system functionality, with evident alterations in reproductive and thyroid hormones and gene expression patterns, also with a trans-generational impact. Nanoplastic size, concentration, and the co-exposure to other endocrine disrupting pollutants may have an influencing role on these effects. Overall, although it is still too early to draw conclusions regarding the human health risks derived from NPs, these preliminary results support the need for further studies employing a wider range of plastic polymer types, concentrations, and time points as well as species and life stages to address a great variety of endocrine outcomes and to achieve a broader and shared consensus on the role of NPs as endocrine disruptors.
期刊介绍:
Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.