TotalSegmentator:CT图像中104个解剖结构的稳健分割。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Radiology-Artificial Intelligence Pub Date : 2023-07-05 eCollection Date: 2023-09-01 DOI:10.1148/ryai.230024
Jakob Wasserthal, Hanns-Christian Breit, Manfred T Meyer, Maurice Pradella, Daniel Hinck, Alexander W Sauter, Tobias Heye, Daniel T Boll, Joshy Cyriac, Shan Yang, Michael Bach, Martin Segeroth
{"title":"TotalSegmentator:CT图像中104个解剖结构的稳健分割。","authors":"Jakob Wasserthal,&nbsp;Hanns-Christian Breit,&nbsp;Manfred T Meyer,&nbsp;Maurice Pradella,&nbsp;Daniel Hinck,&nbsp;Alexander W Sauter,&nbsp;Tobias Heye,&nbsp;Daniel T Boll,&nbsp;Joshy Cyriac,&nbsp;Shan Yang,&nbsp;Michael Bach,&nbsp;Martin Segeroth","doi":"10.1148/ryai.230024","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images.</p><p><strong>Materials and methods: </strong>In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes.</p><p><strong>Results: </strong>The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; <i>P</i> < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [<i>r<sub>s</sub></i> = 0.64; <i>P</i> < .001]; age and mean attenuation of the autochthonous dorsal musculature [<i>r<sub>s</sub></i> = -0.74; <i>P</i> < .001]).</p><p><strong>Conclusion: </strong>The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (<i>https://doi.org/10.5281/zenodo.6802613</i>) and toolkit (<i>https://www.github.com/wasserth/TotalSegmentator</i>) are publicly available.<b>Keywords:</b> CT, Segmentation, Neural Networks <i>Supplemental material is available for this article</i>. © RSNA, 2023See also commentary by Sebro and Mongan in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546353/pdf/ryai.230024.pdf","citationCount":"35","resultStr":"{\"title\":\"TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.\",\"authors\":\"Jakob Wasserthal,&nbsp;Hanns-Christian Breit,&nbsp;Manfred T Meyer,&nbsp;Maurice Pradella,&nbsp;Daniel Hinck,&nbsp;Alexander W Sauter,&nbsp;Tobias Heye,&nbsp;Daniel T Boll,&nbsp;Joshy Cyriac,&nbsp;Shan Yang,&nbsp;Michael Bach,&nbsp;Martin Segeroth\",\"doi\":\"10.1148/ryai.230024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images.</p><p><strong>Materials and methods: </strong>In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes.</p><p><strong>Results: </strong>The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; <i>P</i> < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [<i>r<sub>s</sub></i> = 0.64; <i>P</i> < .001]; age and mean attenuation of the autochthonous dorsal musculature [<i>r<sub>s</sub></i> = -0.74; <i>P</i> < .001]).</p><p><strong>Conclusion: </strong>The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (<i>https://doi.org/10.5281/zenodo.6802613</i>) and toolkit (<i>https://www.github.com/wasserth/TotalSegmentator</i>) are publicly available.<b>Keywords:</b> CT, Segmentation, Neural Networks <i>Supplemental material is available for this article</i>. © RSNA, 2023See also commentary by Sebro and Mongan in this issue.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546353/pdf/ryai.230024.pdf\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 35

摘要

目的:提出一种深度学习分割模型,该模型可以自动、稳健地分割身体CT图像上的所有主要解剖结构。材料和方法:在这项回顾性研究中,1204次CT检查(来自2012年、2016年和2020年)用于分割104个解剖结构(27个器官、59块骨头、10块肌肉和8条血管),这些解剖结构与器官体积测定、疾病特征以及手术或放射治疗计划等使用案例相关。CT图像是从常规临床研究中随机采样的,因此代表了真实世界的数据集(不同的年龄、异常、扫描仪、身体部位、序列和部位)。作者在此数据集上训练了一个nnU-Net分割算法,并计算了Dice相似系数来评估模型的性能。将训练后的算法应用于4004次全身CT检查的第二个数据集,以研究与年龄相关的体积和衰减变化。结果:所提出的模型在测试集上显示出较高的Dice评分(0.943),其中包括了广泛的具有重大异常的临床数据。在单独的数据集上,该模型显著优于另一个公开可用的分割模型(Dice评分,0.932 vs 0.871;P<.001)。衰老研究表明,年龄、体积和各种器官组的平均衰减之间存在显著相关性(例如,年龄和主动脉体积[rs=0.64;P<.001];年龄和自体背侧肌肉组织的平均衰减[rs=-0.74;P<.001])。结论:所开发的模型能够对104个解剖结构进行稳健和准确的分割。带注释的数据集(https://doi.org/10.5281/zenodo.6802613)和工具包(https://www.github.com/wasserth/TotalSegmentator)是公开的。关键词:CT,分割,神经网络本文提供了补充材料。©RSNA,2023另请参阅Sebro和Mongan在本期的评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.

Purpose: To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images.

Materials and methods: In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes.

Results: The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; P < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [rs = 0.64; P < .001]; age and mean attenuation of the autochthonous dorsal musculature [rs = -0.74; P < .001]).

Conclusion: The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.Keywords: CT, Segmentation, Neural Networks Supplemental material is available for this article. © RSNA, 2023See also commentary by Sebro and Mongan in this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信