美国图像上乳腺病变的深度学习辅助诊断:一项多供应商、多中心研究。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Radiology-Artificial Intelligence Pub Date : 2023-07-12 eCollection Date: 2023-09-01 DOI:10.1148/ryai.220185
Huiling Xiang, Xi Wang, Min Xu, Yuhua Zhang, Shue Zeng, Chunyan Li, Lixian Liu, Tingting Deng, Guoxue Tang, Cuiju Yan, Jinjing Ou, Qingguang Lin, Jiehua He, Peng Sun, Anhua Li, Hao Chen, Pheng-Ann Heng, Xi Lin
{"title":"美国图像上乳腺病变的深度学习辅助诊断:一项多供应商、多中心研究。","authors":"Huiling Xiang, Xi Wang, Min Xu, Yuhua Zhang, Shue Zeng, Chunyan Li, Lixian Liu, Tingting Deng, Guoxue Tang, Cuiju Yan, Jinjing Ou, Qingguang Lin, Jiehua He, Peng Sun, Anhua Li, Hao Chen, Pheng-Ann Heng, Xi Lin","doi":"10.1148/ryai.220185","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the diagnostic performance of a deep learning (DL) model for breast US across four hospitals and assess its value to readers with different levels of experience.</p><p><strong>Materials and methods: </strong>In this retrospective study, a dual attention-based convolutional neural network was built and validated to discriminate malignant tumors from benign tumors by using B-mode and color Doppler US images (<i>n</i> = 45 909, March 2011-August 2018), acquired with 42 types of US machines, of 9895 pathologic analysis-confirmed breast lesions in 8797 patients (27 men and 8770 women; mean age, 47 years ± 12 [SD]). With and without assistance from the DL model, three novice readers with less than 5 years of US experience and two experienced readers with 8 and 18 years of US experience, respectively, interpreted 1024 randomly selected lesions. Differences in the areas under the receiver operating characteristic curves (AUCs) were tested using the DeLong test.</p><p><strong>Results: </strong>The DL model using both B-mode and color Doppler US images demonstrated expert-level performance at the lesion level, with an AUC of 0.94 (95% CI: 0.92, 0.95) for the internal set. In external datasets, the AUCs were 0.92 (95% CI: 0.90, 0.94) for hospital 1, 0.91 (95% CI: 0.89, 0.94) for hospital 2, and 0.96 (95% CI: 0.94, 0.98) for hospital 3. DL assistance led to improved AUCs (<i>P</i> < .001) for one experienced and three novice radiologists and improved interobserver agreement. The average false-positive rate was reduced by 7.6% (<i>P</i> = .08).</p><p><strong>Conclusion: </strong>The DL model may help radiologists, especially novice readers, improve accuracy and interobserver agreement of breast tumor diagnosis using US.<b>Keywords:</b> Ultrasound, Breast, Diagnosis, Breast Cancer, Deep Learning, Ultrasonography <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546363/pdf/ryai.220185.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-assisted Diagnosis of Breast Lesions on US Images: A Multivendor, Multicenter Study.\",\"authors\":\"Huiling Xiang, Xi Wang, Min Xu, Yuhua Zhang, Shue Zeng, Chunyan Li, Lixian Liu, Tingting Deng, Guoxue Tang, Cuiju Yan, Jinjing Ou, Qingguang Lin, Jiehua He, Peng Sun, Anhua Li, Hao Chen, Pheng-Ann Heng, Xi Lin\",\"doi\":\"10.1148/ryai.220185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the diagnostic performance of a deep learning (DL) model for breast US across four hospitals and assess its value to readers with different levels of experience.</p><p><strong>Materials and methods: </strong>In this retrospective study, a dual attention-based convolutional neural network was built and validated to discriminate malignant tumors from benign tumors by using B-mode and color Doppler US images (<i>n</i> = 45 909, March 2011-August 2018), acquired with 42 types of US machines, of 9895 pathologic analysis-confirmed breast lesions in 8797 patients (27 men and 8770 women; mean age, 47 years ± 12 [SD]). With and without assistance from the DL model, three novice readers with less than 5 years of US experience and two experienced readers with 8 and 18 years of US experience, respectively, interpreted 1024 randomly selected lesions. Differences in the areas under the receiver operating characteristic curves (AUCs) were tested using the DeLong test.</p><p><strong>Results: </strong>The DL model using both B-mode and color Doppler US images demonstrated expert-level performance at the lesion level, with an AUC of 0.94 (95% CI: 0.92, 0.95) for the internal set. In external datasets, the AUCs were 0.92 (95% CI: 0.90, 0.94) for hospital 1, 0.91 (95% CI: 0.89, 0.94) for hospital 2, and 0.96 (95% CI: 0.94, 0.98) for hospital 3. DL assistance led to improved AUCs (<i>P</i> < .001) for one experienced and three novice radiologists and improved interobserver agreement. The average false-positive rate was reduced by 7.6% (<i>P</i> = .08).</p><p><strong>Conclusion: </strong>The DL model may help radiologists, especially novice readers, improve accuracy and interobserver agreement of breast tumor diagnosis using US.<b>Keywords:</b> Ultrasound, Breast, Diagnosis, Breast Cancer, Deep Learning, Ultrasonography <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546363/pdf/ryai.220185.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.220185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.220185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估四家医院乳腺超声深度学习(DL)模型的诊断性能,并评估其对不同经验水平读者的价值。材料和方法:在这项回顾性研究中,建立并验证了一个基于双注意力的卷积神经网络,通过使用B模式和彩色多普勒超声图像来区分恶性肿瘤和良性肿瘤(n=45 9092011年3月至2018年8月),在9895例病理分析中,8797名患者(27名男性和8770名女性;平均年龄,47岁±12[SD])证实了乳腺病变。在DL模型的帮助和不帮助下,三名美国经验不足5年的新手读者和两名美国经验分别为8年和18年的经验丰富的读者对1024个随机选择的病变进行了解释。使用DeLong检验测试受试者工作特性曲线下面积(AUC)的差异。结果:使用B模式和彩色多普勒超声图像的DL模型在病变水平上表现出专家级的性能,内部集的AUC为0.94(95%CI:0.92,0.95)。在外部数据集中,医院1的AUC为0.92(95%CI:0.90,0.94),医院2的AUC是0.91(95%CI:0.89,0.94,0.96)(95%CI:0.94,0.98)。DL辅助改善了一名经验丰富的放射科医生和三名新手放射科医生的AUC(P<.001),并改善了观察者之间的一致性。平均假阳性率降低了7.6%(P=0.08)。结论:DL模型可以帮助放射科医生,尤其是新手读者,提高US乳腺肿瘤诊断的准确性和观察者之间的一致性。关键词:超声,乳腺,诊断,乳腺癌症,深度学习,超声检查补充材料可用于本文。©RSNA,2023年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-assisted Diagnosis of Breast Lesions on US Images: A Multivendor, Multicenter Study.

Purpose: To evaluate the diagnostic performance of a deep learning (DL) model for breast US across four hospitals and assess its value to readers with different levels of experience.

Materials and methods: In this retrospective study, a dual attention-based convolutional neural network was built and validated to discriminate malignant tumors from benign tumors by using B-mode and color Doppler US images (n = 45 909, March 2011-August 2018), acquired with 42 types of US machines, of 9895 pathologic analysis-confirmed breast lesions in 8797 patients (27 men and 8770 women; mean age, 47 years ± 12 [SD]). With and without assistance from the DL model, three novice readers with less than 5 years of US experience and two experienced readers with 8 and 18 years of US experience, respectively, interpreted 1024 randomly selected lesions. Differences in the areas under the receiver operating characteristic curves (AUCs) were tested using the DeLong test.

Results: The DL model using both B-mode and color Doppler US images demonstrated expert-level performance at the lesion level, with an AUC of 0.94 (95% CI: 0.92, 0.95) for the internal set. In external datasets, the AUCs were 0.92 (95% CI: 0.90, 0.94) for hospital 1, 0.91 (95% CI: 0.89, 0.94) for hospital 2, and 0.96 (95% CI: 0.94, 0.98) for hospital 3. DL assistance led to improved AUCs (P < .001) for one experienced and three novice radiologists and improved interobserver agreement. The average false-positive rate was reduced by 7.6% (P = .08).

Conclusion: The DL model may help radiologists, especially novice readers, improve accuracy and interobserver agreement of breast tumor diagnosis using US.Keywords: Ultrasound, Breast, Diagnosis, Breast Cancer, Deep Learning, Ultrasonography Supplemental material is available for this article. © RSNA, 2023.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信