英国生物库中基因与环境相互作用的不同解释。

Arun Durvasula, Alkes L Price
{"title":"英国生物库中基因与环境相互作用的不同解释。","authors":"Arun Durvasula, Alkes L Price","doi":"10.1101/2023.09.22.23295969","DOIUrl":null,"url":null,"abstract":"<p><p>The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized, but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and E variable. First, we detect locus-specific GxE interaction by testing for genetic correlation <math><mfenced><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></mfenced><mo><</mo><mn>1</mn></math> across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. Simulations show that these approaches achieve high sensitivity and specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average <math><mi>N</mi><mo>=</mo><mn>325</mn><mtext>K</mtext></math>) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub></math> significantly < 1 (FDR<5%) (average <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0.95</mn></math>); for example, white blood cell count had <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0.95</mn></math> (s.e. 0.01) between smokers and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant SNP-heritability differences across E bins; for example, BMI had a significant PRSxE for physical activity (P=4.6e-5) with 5% larger SNP-heritability in the largest versus smallest quintiles of physical activity (P=7e-4). Third, we identified 15 trait-E pairs with significant PRSxE with no SNP-heritability differences across E bins; for example, waist-hip ratio adjusted for BMI had a significant PRSxE effect for time spent watching television (P=5e-3) with no SNP-heritability differences. Across the three scenarios, 8 of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of the three scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait and disease variance.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/81/66/nihpp-2023.09.22.23295969v1.PMC10543037.pdf","citationCount":"0","resultStr":"{\"title\":\"Distinct explanations underlie gene-environment interactions in the UK Biobank.\",\"authors\":\"Arun Durvasula, Alkes L Price\",\"doi\":\"10.1101/2023.09.22.23295969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized, but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and E variable. First, we detect locus-specific GxE interaction by testing for genetic correlation <math><mfenced><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></mfenced><mo><</mo><mn>1</mn></math> across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. Simulations show that these approaches achieve high sensitivity and specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average <math><mi>N</mi><mo>=</mo><mn>325</mn><mtext>K</mtext></math>) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub></math> significantly < 1 (FDR<5%) (average <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0.95</mn></math>); for example, white blood cell count had <math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0.95</mn></math> (s.e. 0.01) between smokers and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant SNP-heritability differences across E bins; for example, BMI had a significant PRSxE for physical activity (P=4.6e-5) with 5% larger SNP-heritability in the largest versus smallest quintiles of physical activity (P=7e-4). Third, we identified 15 trait-E pairs with significant PRSxE with no SNP-heritability differences across E bins; for example, waist-hip ratio adjusted for BMI had a significant PRSxE effect for time spent watching television (P=5e-3) with no SNP-heritability differences. Across the three scenarios, 8 of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of the three scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait and disease variance.</p>\",\"PeriodicalId\":18659,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/81/66/nihpp-2023.09.22.23295969v1.PMC10543037.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.09.22.23295969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.22.23295969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因-环境(GxE)相互作用在疾病和复杂性状结构中的作用被广泛假设,但目前尚不清楚。在这里,我们应用三种统计方法来量化和区分给定疾病/性状和E变量的三种不同类型的GxE相互作用。首先,我们通过检测E个位点之间的遗传相关性(RG)<1来检测位点特异性GxE相互作用。其次,我们通过利用多基因风险评分(PRS)在PRS、E和PRSxE表型的回归中测试显著的PRSxE,以及E箱之间SNP遗传力的差异,来检测E变量对遗传方差的全基因组影响。第三,我们通过测试显著的PRSxE来检测遗传和环境效应的全基因组比例扩增,作为E变量的函数,而E箱的SNP遗传力没有差异。仿真表明,这些方法在区分这三种GxE场景时实现了高灵敏度和特异性。我们将我们的框架应用于33种英国生物库疾病/特征(平均N=325K)和10个E变量,涵盖生活方式、饮食和其他环境暴露。首先,我们确定了19个r g显著<1的trait-E对(FDRr g=0.95);例如,吸烟者和非吸烟者的白细胞计数r g=0.95(s.e.0.01)。其次,我们确定了28对具有显著PRSxE和显著SNP遗传力差异的trait-E对;例如,2型糖尿病在饮酒方面具有显著的PRSxE(P=1e-13),在饮酒量的最大和最小五分位数中,SNP遗传力大4.2倍(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distinct explanations underlie gene-environment interactions in the UK Biobank.

Distinct explanations underlie gene-environment interactions in the UK Biobank.

Distinct explanations underlie gene-environment interactions in the UK Biobank.

Distinct explanations underlie gene-environment interactions in the UK Biobank.

The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized, but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and E variable. First, we detect locus-specific GxE interaction by testing for genetic correlation rg<1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. Simulations show that these approaches achieve high sensitivity and specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average N=325K) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly < 1 (FDR<5%) (average rg=0.95); for example, white blood cell count had rg=0.95 (s.e. 0.01) between smokers and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant SNP-heritability differences across E bins; for example, BMI had a significant PRSxE for physical activity (P=4.6e-5) with 5% larger SNP-heritability in the largest versus smallest quintiles of physical activity (P=7e-4). Third, we identified 15 trait-E pairs with significant PRSxE with no SNP-heritability differences across E bins; for example, waist-hip ratio adjusted for BMI had a significant PRSxE effect for time spent watching television (P=5e-3) with no SNP-heritability differences. Across the three scenarios, 8 of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of the three scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait and disease variance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信