内皮素-1诱导人血管平滑肌细胞中Caveolin-1和Smad2C的磷酸化:NADPH氧化酶、c-Abl和Caveolie完整性在TGF-β受体反激活中的作用。

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Mahsa Hosseinipour, Mojtaba Rashidi, Faezeh Seif, Hossein Babaahmadi-Rezaei
{"title":"内皮素-1诱导人血管平滑肌细胞中Caveolin-1和Smad2C的磷酸化:NADPH氧化酶、c-Abl和Caveolie完整性在TGF-β受体反激活中的作用。","authors":"Mahsa Hosseinipour,&nbsp;Mojtaba Rashidi,&nbsp;Faezeh Seif,&nbsp;Hossein Babaahmadi-Rezaei","doi":"10.22088/IJMCM.BUMS.11.4.297","DOIUrl":null,"url":null,"abstract":"<p><p>Caveolin-1(Cav-1) is one of the most important components of caveolae in the cell membrane, which plays an important role in cell signaling transduction, such as EGFR and TGF-β receptor transactivation. The purpose of this study was to evaluate the effect of c-Abl and NAD(P)H oxidases (NOX) on phosphorylation of Cav-1 and consequently their effect on phosphorylation of Smad2C induced by Endothelin-1 in human vascular smooth muscle cells (VSMCs). In this study, all experiments were performed using human VSMCs. The phosphorylation level of the Caveolin-1 and Smad2C proteins were assessed by western blotting using Phospho-Caveolin-1 (Tyr14) antibody and phospho-Smad2 (Ser465/467) antibody. The data were reported as mean ± SEM. The VSMCs treated with endothelin-1(ET-1) (100 nanomolar (nmol)) demonstrated a time-dependent increase in the pCav-1 level (p<0.05). The inhibitors of NOX (diphenyleneiodonium) (p<0.05), cholesterol depleting agent (beta-cyclodextrin) (p<0.05) and c-Abl inhibitor (PP1) (p<0.01) were able to reduce the level of the phospho-Cav-1 and phospho-Smad2C induced by Et-1 (p<0.05). Our results proposed that caveolae structure, NOX, c-Abl played an important role in the phosphorylation of Cav-1 induced by ET-1 in the human VSMCs. Furthermore, our findings showed that phosphoCav-1 involved in TGFR transactivation. Thus, Et-1 via a transactivation-dependent mechanism can cause phosphorylation of Smad2C.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/f1/ijmcm-11-297.PMC10506675.pdf","citationCount":"0","resultStr":"{\"title\":\"Endothelin-1 Induced Phosphorylation of Caveolin-1 and Smad2C in Human Vascular Smooth Muscle Cells: Role of NADPH Oxidases, c-Abl, and Caveolae Integrity in TGF-β Receptor Transactivation.\",\"authors\":\"Mahsa Hosseinipour,&nbsp;Mojtaba Rashidi,&nbsp;Faezeh Seif,&nbsp;Hossein Babaahmadi-Rezaei\",\"doi\":\"10.22088/IJMCM.BUMS.11.4.297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caveolin-1(Cav-1) is one of the most important components of caveolae in the cell membrane, which plays an important role in cell signaling transduction, such as EGFR and TGF-β receptor transactivation. The purpose of this study was to evaluate the effect of c-Abl and NAD(P)H oxidases (NOX) on phosphorylation of Cav-1 and consequently their effect on phosphorylation of Smad2C induced by Endothelin-1 in human vascular smooth muscle cells (VSMCs). In this study, all experiments were performed using human VSMCs. The phosphorylation level of the Caveolin-1 and Smad2C proteins were assessed by western blotting using Phospho-Caveolin-1 (Tyr14) antibody and phospho-Smad2 (Ser465/467) antibody. The data were reported as mean ± SEM. The VSMCs treated with endothelin-1(ET-1) (100 nanomolar (nmol)) demonstrated a time-dependent increase in the pCav-1 level (p<0.05). The inhibitors of NOX (diphenyleneiodonium) (p<0.05), cholesterol depleting agent (beta-cyclodextrin) (p<0.05) and c-Abl inhibitor (PP1) (p<0.01) were able to reduce the level of the phospho-Cav-1 and phospho-Smad2C induced by Et-1 (p<0.05). Our results proposed that caveolae structure, NOX, c-Abl played an important role in the phosphorylation of Cav-1 induced by ET-1 in the human VSMCs. Furthermore, our findings showed that phosphoCav-1 involved in TGFR transactivation. Thus, Et-1 via a transactivation-dependent mechanism can cause phosphorylation of Smad2C.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/f1/ijmcm-11-297.PMC10506675.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.11.4.297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.11.4.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

Cav-1是细胞膜中小窝蛋白最重要的组成部分之一,在细胞信号转导如EGFR和TGF-β受体反式激活中发挥重要作用。本研究的目的是评估c-Abl和NAD(P)H氧化酶(NOX)对人血管平滑肌细胞(VSMCs)中Cav-1磷酸化的影响,以及它们对内皮素-1诱导的Smad2C磷酸化的作用。在本研究中,所有实验均使用人VSMCs进行。Caveolin-1和Smad2C蛋白的磷酸化水平通过使用磷酸Caveolin-(Tyr14)抗体和磷酸-Smad2(Ser465/467)抗体的蛋白质印迹来评估。数据以平均值±SEM表示。用内皮素-1(ET-1)(100纳摩尔(nmol))处理的VSMCs显示pCav-1水平随时间增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endothelin-1 Induced Phosphorylation of Caveolin-1 and Smad2C in Human Vascular Smooth Muscle Cells: Role of NADPH Oxidases, c-Abl, and Caveolae Integrity in TGF-β Receptor Transactivation.

Caveolin-1(Cav-1) is one of the most important components of caveolae in the cell membrane, which plays an important role in cell signaling transduction, such as EGFR and TGF-β receptor transactivation. The purpose of this study was to evaluate the effect of c-Abl and NAD(P)H oxidases (NOX) on phosphorylation of Cav-1 and consequently their effect on phosphorylation of Smad2C induced by Endothelin-1 in human vascular smooth muscle cells (VSMCs). In this study, all experiments were performed using human VSMCs. The phosphorylation level of the Caveolin-1 and Smad2C proteins were assessed by western blotting using Phospho-Caveolin-1 (Tyr14) antibody and phospho-Smad2 (Ser465/467) antibody. The data were reported as mean ± SEM. The VSMCs treated with endothelin-1(ET-1) (100 nanomolar (nmol)) demonstrated a time-dependent increase in the pCav-1 level (p<0.05). The inhibitors of NOX (diphenyleneiodonium) (p<0.05), cholesterol depleting agent (beta-cyclodextrin) (p<0.05) and c-Abl inhibitor (PP1) (p<0.01) were able to reduce the level of the phospho-Cav-1 and phospho-Smad2C induced by Et-1 (p<0.05). Our results proposed that caveolae structure, NOX, c-Abl played an important role in the phosphorylation of Cav-1 induced by ET-1 in the human VSMCs. Furthermore, our findings showed that phosphoCav-1 involved in TGFR transactivation. Thus, Et-1 via a transactivation-dependent mechanism can cause phosphorylation of Smad2C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信