Wael A. Mahdi , Mohammed Mufadhe Alanazi , Syed Sarim Imam , Sultan Alshehri , Afzal Hussain , Mohammad A. Altamimi , Sulaiman S. Alhudaithi
{"title":"环糊精-氨基酸与黄菊花素多组分包合物的制备:人原发性胶质母细胞瘤细胞系理化特性、细胞活力及凋亡评估","authors":"Wael A. Mahdi , Mohammed Mufadhe Alanazi , Syed Sarim Imam , Sultan Alshehri , Afzal Hussain , Mohammad A. Altamimi , Sulaiman S. Alhudaithi","doi":"10.1016/j.ijpx.2023.100211","DOIUrl":null,"url":null,"abstract":"<div><p>Chrysin (CR) is a water-insoluble drug reported for different therapeutic effects. The microwave irradiation method was used in this study to create a multicomponent inclusion complex (CR-MC) containing CR (drug) and carrier hydroxyl propyl beta cyclodextrin (HP β CD) and L-arginine (LA). The prepared inclusion complex (CR-MC) was evaluated for dissolution study and results were compared with chrysin physical mixture (CR-PM). Further, the samples were assessed for infra-red (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and molecular docking. Finally, the cell viability, reactive oxygen species and flow cytometer studies were also assessed to check the potential of the prepared inclusion complex on the human primary glioblastoma cell line <strong>(</strong>U87-MG cell). The phase solubility findings revealed a stability constant (773 mol L<sup>−1</sup>) as well as a complexation efficiency of 0.027. The dissolution study displayed a significant increase in CR release from CR-MC (99.03 ± 0.39%) > CR-PM (70.58 ± 1.16%) > pure CR (35.29 ± 1.55%). NMR and IR spectral data revealed no interaction between CR and carriers. SEM and DSC study results revealed the conversion into amorphous form. The molecular docking results illustrated a high docking score, which supports the findings of complex formation. The cell viability, reactive oxygen species, and flow cytometry studies results showed enhanced activity from CR-MC against the tested human primary glioblastoma cell line. From the results it has been observed that chrysin solubility significantly increased after complexation and there in vitro activity also enhanced against cancer cell line.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100211"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/96/main.PMC10510083.pdf","citationCount":"1","resultStr":"{\"title\":\"Formulation of multicomponent inclusion complex of cyclodextrin-amino acid with Chrysin: Physicochemical characterization, cell viability and apoptosis assessment in human primary glioblastoma cell line\",\"authors\":\"Wael A. Mahdi , Mohammed Mufadhe Alanazi , Syed Sarim Imam , Sultan Alshehri , Afzal Hussain , Mohammad A. Altamimi , Sulaiman S. Alhudaithi\",\"doi\":\"10.1016/j.ijpx.2023.100211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chrysin (CR) is a water-insoluble drug reported for different therapeutic effects. The microwave irradiation method was used in this study to create a multicomponent inclusion complex (CR-MC) containing CR (drug) and carrier hydroxyl propyl beta cyclodextrin (HP β CD) and L-arginine (LA). The prepared inclusion complex (CR-MC) was evaluated for dissolution study and results were compared with chrysin physical mixture (CR-PM). Further, the samples were assessed for infra-red (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and molecular docking. Finally, the cell viability, reactive oxygen species and flow cytometer studies were also assessed to check the potential of the prepared inclusion complex on the human primary glioblastoma cell line <strong>(</strong>U87-MG cell). The phase solubility findings revealed a stability constant (773 mol L<sup>−1</sup>) as well as a complexation efficiency of 0.027. The dissolution study displayed a significant increase in CR release from CR-MC (99.03 ± 0.39%) > CR-PM (70.58 ± 1.16%) > pure CR (35.29 ± 1.55%). NMR and IR spectral data revealed no interaction between CR and carriers. SEM and DSC study results revealed the conversion into amorphous form. The molecular docking results illustrated a high docking score, which supports the findings of complex formation. The cell viability, reactive oxygen species, and flow cytometry studies results showed enhanced activity from CR-MC against the tested human primary glioblastoma cell line. From the results it has been observed that chrysin solubility significantly increased after complexation and there in vitro activity also enhanced against cancer cell line.</p></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"6 \",\"pages\":\"Article 100211\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/96/main.PMC10510083.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156723000555\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156723000555","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Formulation of multicomponent inclusion complex of cyclodextrin-amino acid with Chrysin: Physicochemical characterization, cell viability and apoptosis assessment in human primary glioblastoma cell line
Chrysin (CR) is a water-insoluble drug reported for different therapeutic effects. The microwave irradiation method was used in this study to create a multicomponent inclusion complex (CR-MC) containing CR (drug) and carrier hydroxyl propyl beta cyclodextrin (HP β CD) and L-arginine (LA). The prepared inclusion complex (CR-MC) was evaluated for dissolution study and results were compared with chrysin physical mixture (CR-PM). Further, the samples were assessed for infra-red (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and molecular docking. Finally, the cell viability, reactive oxygen species and flow cytometer studies were also assessed to check the potential of the prepared inclusion complex on the human primary glioblastoma cell line (U87-MG cell). The phase solubility findings revealed a stability constant (773 mol L−1) as well as a complexation efficiency of 0.027. The dissolution study displayed a significant increase in CR release from CR-MC (99.03 ± 0.39%) > CR-PM (70.58 ± 1.16%) > pure CR (35.29 ± 1.55%). NMR and IR spectral data revealed no interaction between CR and carriers. SEM and DSC study results revealed the conversion into amorphous form. The molecular docking results illustrated a high docking score, which supports the findings of complex formation. The cell viability, reactive oxygen species, and flow cytometry studies results showed enhanced activity from CR-MC against the tested human primary glioblastoma cell line. From the results it has been observed that chrysin solubility significantly increased after complexation and there in vitro activity also enhanced against cancer cell line.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.