Gantsetseg Garmaa, Anna Manzéger, Samaneh Haghighi, Gábor Kökény
{"title":"HK-2细胞对TGF-β的反应高度依赖于细胞培养基配方。","authors":"Gantsetseg Garmaa, Anna Manzéger, Samaneh Haghighi, Gábor Kökény","doi":"10.1007/s00418-023-02237-x","DOIUrl":null,"url":null,"abstract":"<p><p>The immortalized human renal proximal tubular epithelial cell line HK-2 is most commonly used to study renal cell physiology and human kidney diseases with tubulointerstitial fibrosis such as diabetic nephropathy, obstructive uropathy or allograft fibrosis. Epithelial-to-mesenchymal transition (EMT) is the main pathological process of tubulointerstitial fibrosis in vitro. Transforming growth factor-beta (TGF-β) is a key inducer of EMT. Several pro-fibrotic gene expression differences have been observed in a TGF-β-induced EMT model of HK-2 cells. However, growth conditions and medium formulations might greatly impact these differences. We investigated gene and protein expression of HK-2 cells cultured in six medium formulations. TGF-β1 increased the expression of ACTA2, TGFB1, COL4A1, EGR2, VIM and CTGF genes while reducing PPARG in all medium formulations. Interestingly, TGF-β1 treatment either increased or decreased EGR1, FN, IL6 and C3 gene expression, depending on medium formulations. The cell morphology was slightly affected, but immunoblots revealed TGFB1 and vimentin protein overexpression in all media. However, fibronectin expression as well as the nuclear translocation of EGR1 was medium dependent. In conclusion, our study demonstrates that, using the HK-2 in vitro model of EMT, the meticulous selection of appropriate cell culture medium formulation is essential to achieve reliable scientific results.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"69-79"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HK-2 cell response to TGF-β highly depends on cell culture medium formulations.\",\"authors\":\"Gantsetseg Garmaa, Anna Manzéger, Samaneh Haghighi, Gábor Kökény\",\"doi\":\"10.1007/s00418-023-02237-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immortalized human renal proximal tubular epithelial cell line HK-2 is most commonly used to study renal cell physiology and human kidney diseases with tubulointerstitial fibrosis such as diabetic nephropathy, obstructive uropathy or allograft fibrosis. Epithelial-to-mesenchymal transition (EMT) is the main pathological process of tubulointerstitial fibrosis in vitro. Transforming growth factor-beta (TGF-β) is a key inducer of EMT. Several pro-fibrotic gene expression differences have been observed in a TGF-β-induced EMT model of HK-2 cells. However, growth conditions and medium formulations might greatly impact these differences. We investigated gene and protein expression of HK-2 cells cultured in six medium formulations. TGF-β1 increased the expression of ACTA2, TGFB1, COL4A1, EGR2, VIM and CTGF genes while reducing PPARG in all medium formulations. Interestingly, TGF-β1 treatment either increased or decreased EGR1, FN, IL6 and C3 gene expression, depending on medium formulations. The cell morphology was slightly affected, but immunoblots revealed TGFB1 and vimentin protein overexpression in all media. However, fibronectin expression as well as the nuclear translocation of EGR1 was medium dependent. In conclusion, our study demonstrates that, using the HK-2 in vitro model of EMT, the meticulous selection of appropriate cell culture medium formulation is essential to achieve reliable scientific results.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"69-79\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-023-02237-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-023-02237-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
HK-2 cell response to TGF-β highly depends on cell culture medium formulations.
The immortalized human renal proximal tubular epithelial cell line HK-2 is most commonly used to study renal cell physiology and human kidney diseases with tubulointerstitial fibrosis such as diabetic nephropathy, obstructive uropathy or allograft fibrosis. Epithelial-to-mesenchymal transition (EMT) is the main pathological process of tubulointerstitial fibrosis in vitro. Transforming growth factor-beta (TGF-β) is a key inducer of EMT. Several pro-fibrotic gene expression differences have been observed in a TGF-β-induced EMT model of HK-2 cells. However, growth conditions and medium formulations might greatly impact these differences. We investigated gene and protein expression of HK-2 cells cultured in six medium formulations. TGF-β1 increased the expression of ACTA2, TGFB1, COL4A1, EGR2, VIM and CTGF genes while reducing PPARG in all medium formulations. Interestingly, TGF-β1 treatment either increased or decreased EGR1, FN, IL6 and C3 gene expression, depending on medium formulations. The cell morphology was slightly affected, but immunoblots revealed TGFB1 and vimentin protein overexpression in all media. However, fibronectin expression as well as the nuclear translocation of EGR1 was medium dependent. In conclusion, our study demonstrates that, using the HK-2 in vitro model of EMT, the meticulous selection of appropriate cell culture medium formulation is essential to achieve reliable scientific results.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.