Georg Gohla, Ricarda Schwarz, Georg Bier, Arne Estler, Malte N. Bongers, Hendrik Ditt, Jan Fritz, André Kemmling, Ulrike Ernemann, Marius Horger
{"title":"一种新的全自动测量ASPECTS以改进中风诊断的方法:与传统ASPECTS的比较。","authors":"Georg Gohla, Ricarda Schwarz, Georg Bier, Arne Estler, Malte N. Bongers, Hendrik Ditt, Jan Fritz, André Kemmling, Ulrike Ernemann, Marius Horger","doi":"10.1111/jon.13159","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>To compare the accuracy of subjective Alberta Stroke Program Early CT Score (sASPECTS) evaluation and that of an automated prototype software (aASPECTS) on nonenhanced CT (NECT) in patients with early anterior territory stroke and controls using side-to-side quantification of hypoattenuated brain areas.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We retrospectively analyzed the NECT scans of 42 consecutive patients with ischemic stroke before reperfusion and 42 controls using first sASPECTS and subsequently aASPECTS. We assessed the differences in Alberta Stroke Program Early CT Score (ASPECTS) and calculated the sensitivity and specificity of NECT with CT perfusion, whereas cerebral blood volume (CBV) served as the reference standard for brain infarction.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The clot was located in the middle cerebral artery (MCA) in 47.6% of cases and the internal carotid artery (ICA) in 28.6% of cases. Ten cases presented combined ICA and MCA occlusions. The stroke was right sided in 52.4% of cases and left sided in 47.6%. Reader-based NECT analysis yielded a median sASPECTS of 10. The median CBV-based ASPECTS was 7. Compared to the area of decreased CBV, sASPECTS yielded a sensitivity of 12.5% and specificity of 86.8%. The software prototype (aASPECTS) yielded an overall sensitivity of 65.5% and a specificity of 92.2%. The interreader agreement for ASPECTS evaluation of admission NECT and follow-up CT was almost perfect (<i>κ</i> = .93). The interreader agreement of the CBV color map evaluation was substantial (<i>κ</i> = .77).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>aASPECTS of NECT can outperform sASPECTS for stroke detection.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 1","pages":"145-151"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13159","citationCount":"0","resultStr":"{\"title\":\"A novel fully automated method for measuring ASPECTS to improve stroke diagnosis: Comparison to traditional ASPECTS\",\"authors\":\"Georg Gohla, Ricarda Schwarz, Georg Bier, Arne Estler, Malte N. Bongers, Hendrik Ditt, Jan Fritz, André Kemmling, Ulrike Ernemann, Marius Horger\",\"doi\":\"10.1111/jon.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>To compare the accuracy of subjective Alberta Stroke Program Early CT Score (sASPECTS) evaluation and that of an automated prototype software (aASPECTS) on nonenhanced CT (NECT) in patients with early anterior territory stroke and controls using side-to-side quantification of hypoattenuated brain areas.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We retrospectively analyzed the NECT scans of 42 consecutive patients with ischemic stroke before reperfusion and 42 controls using first sASPECTS and subsequently aASPECTS. We assessed the differences in Alberta Stroke Program Early CT Score (ASPECTS) and calculated the sensitivity and specificity of NECT with CT perfusion, whereas cerebral blood volume (CBV) served as the reference standard for brain infarction.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The clot was located in the middle cerebral artery (MCA) in 47.6% of cases and the internal carotid artery (ICA) in 28.6% of cases. Ten cases presented combined ICA and MCA occlusions. The stroke was right sided in 52.4% of cases and left sided in 47.6%. Reader-based NECT analysis yielded a median sASPECTS of 10. The median CBV-based ASPECTS was 7. Compared to the area of decreased CBV, sASPECTS yielded a sensitivity of 12.5% and specificity of 86.8%. The software prototype (aASPECTS) yielded an overall sensitivity of 65.5% and a specificity of 92.2%. The interreader agreement for ASPECTS evaluation of admission NECT and follow-up CT was almost perfect (<i>κ</i> = .93). The interreader agreement of the CBV color map evaluation was substantial (<i>κ</i> = .77).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>aASPECTS of NECT can outperform sASPECTS for stroke detection.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 1\",\"pages\":\"145-151\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13159\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A novel fully automated method for measuring ASPECTS to improve stroke diagnosis: Comparison to traditional ASPECTS
Background and Purpose
To compare the accuracy of subjective Alberta Stroke Program Early CT Score (sASPECTS) evaluation and that of an automated prototype software (aASPECTS) on nonenhanced CT (NECT) in patients with early anterior territory stroke and controls using side-to-side quantification of hypoattenuated brain areas.
Methods
We retrospectively analyzed the NECT scans of 42 consecutive patients with ischemic stroke before reperfusion and 42 controls using first sASPECTS and subsequently aASPECTS. We assessed the differences in Alberta Stroke Program Early CT Score (ASPECTS) and calculated the sensitivity and specificity of NECT with CT perfusion, whereas cerebral blood volume (CBV) served as the reference standard for brain infarction.
Results
The clot was located in the middle cerebral artery (MCA) in 47.6% of cases and the internal carotid artery (ICA) in 28.6% of cases. Ten cases presented combined ICA and MCA occlusions. The stroke was right sided in 52.4% of cases and left sided in 47.6%. Reader-based NECT analysis yielded a median sASPECTS of 10. The median CBV-based ASPECTS was 7. Compared to the area of decreased CBV, sASPECTS yielded a sensitivity of 12.5% and specificity of 86.8%. The software prototype (aASPECTS) yielded an overall sensitivity of 65.5% and a specificity of 92.2%. The interreader agreement for ASPECTS evaluation of admission NECT and follow-up CT was almost perfect (κ = .93). The interreader agreement of the CBV color map evaluation was substantial (κ = .77).
Conclusions
aASPECTS of NECT can outperform sASPECTS for stroke detection.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!