{"title":"激光诱导间质热疗对脑三维肿瘤的治疗建模。","authors":"Sadegh Amini, Hossein Ahmadikia","doi":"10.34172/jlms.2023.26","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> There are some ways to examine heat transfer in tumor tissue, which is an important issue in bioengineering. One of these ways uses the bioheat equation, proposed by Pennes, in a continuous medium. Another one uses a porous medium to model heat transfer in living tissues. The objective of this paper was to study an approach to modelling the temperature distribution and tumour ablation in brain tissue and compare results to Pennes' approach. <b>Methods:</b> This approach presents and uses a porous medium as the tissue instead of a continuous medium. In addition, the two approaches (simulation in continuous and porous medium) are compared in terms of temperature simulation and amount of cell ablation. The density, heat conduction factor, and blood perfusion rate are considered functions of temperature. <b>Results:</b> In these approaches, after an 85-second treatment, the temperature increases to about 90°C. The temperature increase of the porous medium is relatively the same as that of the continuous medium and for this reason, the amount of cancerous cells that are ablated in a porous medium is approximately the same as that in a continuous medium. The volume of cell ablation is about 6500 mm<sup>3</sup> for two ideas. In addition, the degree of damage, computed from the Arrhenius integral method, and the ablated volume of the tumour endorse equality at the end of treatment. According to the results, similar to the continuous approach, the porous approach predicts the temperature and amount of volume of damaged cells. <b>Conclusion:</b> Therefore, it is possible to use the porous approach instead of the Pennes approach for tumour treatment.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":"14 ","pages":"e26"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517584/pdf/jlms-14-e26.pdf","citationCount":"0","resultStr":"{\"title\":\"Treatment Modelling of a 3D Tumour in Brain by Laser-Induced Interstitial Thermotherapy.\",\"authors\":\"Sadegh Amini, Hossein Ahmadikia\",\"doi\":\"10.34172/jlms.2023.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> There are some ways to examine heat transfer in tumor tissue, which is an important issue in bioengineering. One of these ways uses the bioheat equation, proposed by Pennes, in a continuous medium. Another one uses a porous medium to model heat transfer in living tissues. The objective of this paper was to study an approach to modelling the temperature distribution and tumour ablation in brain tissue and compare results to Pennes' approach. <b>Methods:</b> This approach presents and uses a porous medium as the tissue instead of a continuous medium. In addition, the two approaches (simulation in continuous and porous medium) are compared in terms of temperature simulation and amount of cell ablation. The density, heat conduction factor, and blood perfusion rate are considered functions of temperature. <b>Results:</b> In these approaches, after an 85-second treatment, the temperature increases to about 90°C. The temperature increase of the porous medium is relatively the same as that of the continuous medium and for this reason, the amount of cancerous cells that are ablated in a porous medium is approximately the same as that in a continuous medium. The volume of cell ablation is about 6500 mm<sup>3</sup> for two ideas. In addition, the degree of damage, computed from the Arrhenius integral method, and the ablated volume of the tumour endorse equality at the end of treatment. According to the results, similar to the continuous approach, the porous approach predicts the temperature and amount of volume of damaged cells. <b>Conclusion:</b> Therefore, it is possible to use the porous approach instead of the Pennes approach for tumour treatment.</p>\",\"PeriodicalId\":16224,\"journal\":{\"name\":\"Journal of lasers in medical sciences\",\"volume\":\"14 \",\"pages\":\"e26\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517584/pdf/jlms-14-e26.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers in medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jlms.2023.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Treatment Modelling of a 3D Tumour in Brain by Laser-Induced Interstitial Thermotherapy.
Introduction: There are some ways to examine heat transfer in tumor tissue, which is an important issue in bioengineering. One of these ways uses the bioheat equation, proposed by Pennes, in a continuous medium. Another one uses a porous medium to model heat transfer in living tissues. The objective of this paper was to study an approach to modelling the temperature distribution and tumour ablation in brain tissue and compare results to Pennes' approach. Methods: This approach presents and uses a porous medium as the tissue instead of a continuous medium. In addition, the two approaches (simulation in continuous and porous medium) are compared in terms of temperature simulation and amount of cell ablation. The density, heat conduction factor, and blood perfusion rate are considered functions of temperature. Results: In these approaches, after an 85-second treatment, the temperature increases to about 90°C. The temperature increase of the porous medium is relatively the same as that of the continuous medium and for this reason, the amount of cancerous cells that are ablated in a porous medium is approximately the same as that in a continuous medium. The volume of cell ablation is about 6500 mm3 for two ideas. In addition, the degree of damage, computed from the Arrhenius integral method, and the ablated volume of the tumour endorse equality at the end of treatment. According to the results, similar to the continuous approach, the porous approach predicts the temperature and amount of volume of damaged cells. Conclusion: Therefore, it is possible to use the porous approach instead of the Pennes approach for tumour treatment.
期刊介绍:
The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)