Sumrati Gurtoo, Gayathree Karthikkeyan, Santosh Kumar Behera, Chinmaya Narayana Kotimoole, Mohd Altaf Najar, Prashant Kumar Modi, Sahana Ks, Sneha M Pinto, Arun Ab
{"title":"无创早期预测窒息新生儿缺氧缺血性损伤的比较蛋白质组学分析。","authors":"Sumrati Gurtoo, Gayathree Karthikkeyan, Santosh Kumar Behera, Chinmaya Narayana Kotimoole, Mohd Altaf Najar, Prashant Kumar Modi, Sahana Ks, Sneha M Pinto, Arun Ab","doi":"10.1002/prca.202200054","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented.</p><p><strong>Experimental design: </strong>A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed.</p><p><strong>Results: </strong>The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE.</p><p><strong>Conclusion: </strong>Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e2200054"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative proteomic analysis for non-invasive early prediction of hypoxic-ischemic injury in asphyxiated neonates.\",\"authors\":\"Sumrati Gurtoo, Gayathree Karthikkeyan, Santosh Kumar Behera, Chinmaya Narayana Kotimoole, Mohd Altaf Najar, Prashant Kumar Modi, Sahana Ks, Sneha M Pinto, Arun Ab\",\"doi\":\"10.1002/prca.202200054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented.</p><p><strong>Experimental design: </strong>A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed.</p><p><strong>Results: </strong>The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE.</p><p><strong>Conclusion: </strong>Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.</p>\",\"PeriodicalId\":20571,\"journal\":{\"name\":\"PROTEOMICS – Clinical Applications\",\"volume\":\" \",\"pages\":\"e2200054\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROTEOMICS – Clinical Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prca.202200054\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202200054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A comparative proteomic analysis for non-invasive early prediction of hypoxic-ischemic injury in asphyxiated neonates.
Aim: Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented.
Experimental design: A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed.
Results: The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE.
Conclusion: Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.