Matej Gallo , Vojtěch Krajňanský , Rudolf Nenutil , Petr Holub , Tomáš Brázdil
{"title":"揭示神经网络的黑盒用于通过基于闭塞的解释性检测整张幻灯片图像中的前列腺癌症。","authors":"Matej Gallo , Vojtěch Krajňanský , Rudolf Nenutil , Petr Holub , Tomáš Brázdil","doi":"10.1016/j.nbt.2023.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnostic histopathology faces increasing demands due to aging populations and expanding healthcare programs. Semi-automated diagnostic systems employing deep learning methods are one approach to alleviate this pressure. The learning models for histopathology are inherently complex and opaque from the user's perspective. Hence different methods have been developed to interpret their behavior. However, relatively limited attention has been devoted to the connection between interpretation methods and the knowledge of experienced pathologists. The main contribution of this paper is a method for comparing morphological patterns used by expert pathologists to detect cancer with the patterns identified as important for inference of learning models. Given the patch-based nature of processing large-scale histopathological imaging, we have been able to show statistically that the VGG16 model could utilize all the structures that are observable by the pathologist, given the patch size and scan resolution. The results show that the neural network approach to recognizing prostatic cancer is similar to that of a pathologist at medium optical resolution. The saliency maps identified several prevailing histomorphological features characterizing carcinoma, e.g., single-layered epithelium, small lumina, and hyperchromatic nuclei with halo. A convincing finding was the recognition of their mimickers in non-neoplastic tissue. The method can also identify differences, i.e., standard patterns not used by the learning models and new patterns not yet used by pathologists. Saliency maps provide added value for automated digital pathology to analyze and fine-tune deep learning systems and improve trust in computer-based decisions.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shedding light on the black box of a neural network used to detect prostate cancer in whole slide images by occlusion-based explainability\",\"authors\":\"Matej Gallo , Vojtěch Krajňanský , Rudolf Nenutil , Petr Holub , Tomáš Brázdil\",\"doi\":\"10.1016/j.nbt.2023.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diagnostic histopathology faces increasing demands due to aging populations and expanding healthcare programs. Semi-automated diagnostic systems employing deep learning methods are one approach to alleviate this pressure. The learning models for histopathology are inherently complex and opaque from the user's perspective. Hence different methods have been developed to interpret their behavior. However, relatively limited attention has been devoted to the connection between interpretation methods and the knowledge of experienced pathologists. The main contribution of this paper is a method for comparing morphological patterns used by expert pathologists to detect cancer with the patterns identified as important for inference of learning models. Given the patch-based nature of processing large-scale histopathological imaging, we have been able to show statistically that the VGG16 model could utilize all the structures that are observable by the pathologist, given the patch size and scan resolution. The results show that the neural network approach to recognizing prostatic cancer is similar to that of a pathologist at medium optical resolution. The saliency maps identified several prevailing histomorphological features characterizing carcinoma, e.g., single-layered epithelium, small lumina, and hyperchromatic nuclei with halo. A convincing finding was the recognition of their mimickers in non-neoplastic tissue. The method can also identify differences, i.e., standard patterns not used by the learning models and new patterns not yet used by pathologists. Saliency maps provide added value for automated digital pathology to analyze and fine-tune deep learning systems and improve trust in computer-based decisions.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678423000511\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678423000511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Shedding light on the black box of a neural network used to detect prostate cancer in whole slide images by occlusion-based explainability
Diagnostic histopathology faces increasing demands due to aging populations and expanding healthcare programs. Semi-automated diagnostic systems employing deep learning methods are one approach to alleviate this pressure. The learning models for histopathology are inherently complex and opaque from the user's perspective. Hence different methods have been developed to interpret their behavior. However, relatively limited attention has been devoted to the connection between interpretation methods and the knowledge of experienced pathologists. The main contribution of this paper is a method for comparing morphological patterns used by expert pathologists to detect cancer with the patterns identified as important for inference of learning models. Given the patch-based nature of processing large-scale histopathological imaging, we have been able to show statistically that the VGG16 model could utilize all the structures that are observable by the pathologist, given the patch size and scan resolution. The results show that the neural network approach to recognizing prostatic cancer is similar to that of a pathologist at medium optical resolution. The saliency maps identified several prevailing histomorphological features characterizing carcinoma, e.g., single-layered epithelium, small lumina, and hyperchromatic nuclei with halo. A convincing finding was the recognition of their mimickers in non-neoplastic tissue. The method can also identify differences, i.e., standard patterns not used by the learning models and new patterns not yet used by pathologists. Saliency maps provide added value for automated digital pathology to analyze and fine-tune deep learning systems and improve trust in computer-based decisions.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.