Camille Morlighem, Celia Chaiban, Stefanos Georganos, Oscar Brousse, Nicole P. M. van Lipzig, Eléonore Wolff, Sébastien Dujardin, Catherine Linard
{"title":"利用人口和健康调查绘制撒哈拉以南非洲城市疟疾风险图的空间优化方法。","authors":"Camille Morlighem, Celia Chaiban, Stefanos Georganos, Oscar Brousse, Nicole P. M. van Lipzig, Eléonore Wolff, Sébastien Dujardin, Catherine Linard","doi":"10.1029/2023GH000787","DOIUrl":null,"url":null,"abstract":"<p>Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra-urban malaria risk in SSA cities—Dakar, Dar es Salaam, Kampala and Ouagadougou—and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%–40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra-urban scale.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000787","citationCount":"0","resultStr":"{\"title\":\"Spatial Optimization Methods for Malaria Risk Mapping in Sub-Saharan African Cities Using Demographic and Health Surveys\",\"authors\":\"Camille Morlighem, Celia Chaiban, Stefanos Georganos, Oscar Brousse, Nicole P. M. van Lipzig, Eléonore Wolff, Sébastien Dujardin, Catherine Linard\",\"doi\":\"10.1029/2023GH000787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra-urban malaria risk in SSA cities—Dakar, Dar es Salaam, Kampala and Ouagadougou—and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%–40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra-urban scale.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000787\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000787\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000787","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatial Optimization Methods for Malaria Risk Mapping in Sub-Saharan African Cities Using Demographic and Health Surveys
Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra-urban malaria risk in SSA cities—Dakar, Dar es Salaam, Kampala and Ouagadougou—and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%–40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra-urban scale.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.