新颖性诱导的记忆巩固伴随着Agap3转录的增加:一项跨物种研究。

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Kristoffer Højgaard, Bianka Szöllősi, Kim Henningsen, Natsumi Minami, Nobuhiro Nakanishi, Erik Kaadt, Makoto Tamura, Richard G M Morris, Tomonori Takeuchi, Betina Elfving
{"title":"新颖性诱导的记忆巩固伴随着Agap3转录的增加:一项跨物种研究。","authors":"Kristoffer Højgaard, Bianka Szöllősi, Kim Henningsen, Natsumi Minami, Nobuhiro Nakanishi, Erik Kaadt, Makoto Tamura, Richard G M Morris, Tomonori Takeuchi, Betina Elfving","doi":"10.1186/s13041-023-01056-4","DOIUrl":null,"url":null,"abstract":"<p><p>Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D<sub>1</sub>/D<sub>5</sub> receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study.\",\"authors\":\"Kristoffer Højgaard, Bianka Szöllősi, Kim Henningsen, Natsumi Minami, Nobuhiro Nakanishi, Erik Kaadt, Makoto Tamura, Richard G M Morris, Tomonori Takeuchi, Betina Elfving\",\"doi\":\"10.1186/s13041-023-01056-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D<sub>1</sub>/D<sub>5</sub> receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.</p>\",\"PeriodicalId\":18851,\"journal\":{\"name\":\"Molecular Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13041-023-01056-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-023-01056-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

新颖性诱导的记忆巩固是一种公认的现象,它依赖于蓝斑海马回路的激活。它与可能介导初始或细胞记忆巩固的活性依赖性基因的表达有关。到目前为止,已经确定了几个基因,然而,为了充分了解记忆巩固的机制,必须确定更多的候选基因。在这项跨物种研究中,我们使用上下文新颖性探索范式来确定小鼠和大鼠背侧海马基因表达的变化。我们发现,在上下文新颖性之后,基因表达的变化在两个物种之间存在差异,其中9个基因在小鼠中上调,3个基因在大鼠中上调。物种间的比较显示,具有GTPase结构域、锚蛋白重复序列和PH结构域3(Agap3)的ArfGAP是唯一在两者中上调的基因,这表明Agap3具有潜在的保守作用。已知AGAP3调节突触中的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)型谷氨酸受体运输,这表明AGAP3转录的增加可能与维持功能可塑性有关。虽然我们确定了几个受上下文新颖性探索影响的基因,但我们无法使用多巴胺D1/D5受体拮抗剂SCH 23390完全逆转这些变化。进一步研究AGAP3在新奇感诱导的记忆巩固中的作用,可以更好地理解这一过程,并指导未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study.

Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study.

Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study.

Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study.

Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信