Jenna A. Dombroski, Schyler J. Rowland, Abigail R. Fabiano, Samantha V. Knoblauch, Jacob M. Hope, Michael R. King
{"title":"流体剪切应力增强树突细胞的活化。","authors":"Jenna A. Dombroski, Schyler J. Rowland, Abigail R. Fabiano, Samantha V. Knoblauch, Jacob M. Hope, Michael R. King","doi":"10.1016/j.imbio.2023.152744","DOIUrl":null,"url":null,"abstract":"<div><p>Ex vivo activation of dendritic cells (DCs) has been widely explored for targeted therapies, although these treatments remain expensive. Reducing treatment costs while enhancing cell activation could help to make immunotherapies more accessible. Cells can be activated by both internal and external forces including fluid shear stress (FSS). FSS activates cells via opening of mechanosensitive ion channels. In this study, dendritic cells were activated by sustained exposure to circulatory levels of fluid shear stress using a cone-and-plate flow device and analyzed for activation markers. After 1 h of shear stress exposure, an increase in cytokine release was present in immortalized cells as well as phosphorylation of the proteins NF-κB and cFos in primary DCs. Changes in DC morphology, metabolism and proliferation were also observed. These compelling new findings point to the potential for using FSS to activate DCs for ex vivo therapeutics.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"228 6","pages":"Article 152744"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fluid shear stress enhances dendritic cell activation\",\"authors\":\"Jenna A. Dombroski, Schyler J. Rowland, Abigail R. Fabiano, Samantha V. Knoblauch, Jacob M. Hope, Michael R. King\",\"doi\":\"10.1016/j.imbio.2023.152744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ex vivo activation of dendritic cells (DCs) has been widely explored for targeted therapies, although these treatments remain expensive. Reducing treatment costs while enhancing cell activation could help to make immunotherapies more accessible. Cells can be activated by both internal and external forces including fluid shear stress (FSS). FSS activates cells via opening of mechanosensitive ion channels. In this study, dendritic cells were activated by sustained exposure to circulatory levels of fluid shear stress using a cone-and-plate flow device and analyzed for activation markers. After 1 h of shear stress exposure, an increase in cytokine release was present in immortalized cells as well as phosphorylation of the proteins NF-κB and cFos in primary DCs. Changes in DC morphology, metabolism and proliferation were also observed. These compelling new findings point to the potential for using FSS to activate DCs for ex vivo therapeutics.</p></div>\",\"PeriodicalId\":13270,\"journal\":{\"name\":\"Immunobiology\",\"volume\":\"228 6\",\"pages\":\"Article 152744\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0171298523045461\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298523045461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Ex vivo activation of dendritic cells (DCs) has been widely explored for targeted therapies, although these treatments remain expensive. Reducing treatment costs while enhancing cell activation could help to make immunotherapies more accessible. Cells can be activated by both internal and external forces including fluid shear stress (FSS). FSS activates cells via opening of mechanosensitive ion channels. In this study, dendritic cells were activated by sustained exposure to circulatory levels of fluid shear stress using a cone-and-plate flow device and analyzed for activation markers. After 1 h of shear stress exposure, an increase in cytokine release was present in immortalized cells as well as phosphorylation of the proteins NF-κB and cFos in primary DCs. Changes in DC morphology, metabolism and proliferation were also observed. These compelling new findings point to the potential for using FSS to activate DCs for ex vivo therapeutics.
期刊介绍:
Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including
• Innate Immunity,
• Adaptive Immunity,
• Complement Biology,
• Macrophage and Dendritic Cell Biology,
• Parasite Immunology,
• Tumour Immunology,
• Clinical Immunology,
• Immunogenetics,
• Immunotherapy and
• Immunopathology of infectious, allergic and autoimmune disease.