{"title":"水牛胎儿成纤维细胞SIRT6基因敲除加剧DNA和端粒损伤引起的早衰。","authors":"Jingyuan Liang, Jiayu Cui, Juanru Cheng, Yu Pan, Ruimen Zhang, Sufang Yang, Lingxiu Zou","doi":"10.1089/cell.2023.0048","DOIUrl":null,"url":null,"abstract":"<p><p>As a gene with antiaging functions, sirtuin6 (<i>SIRT6</i>) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of <i>SIRT6</i> in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during <i>in vitro</i> cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of <i>SIRT6</i> and also aid in selecting donor cells for buffalo somatic cell reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"277-287"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT6 Knockdown in Buffalo Fetal Fibroblasts Exacerbates Premature Senescence Caused by DNA and Telomere Damage.\",\"authors\":\"Jingyuan Liang, Jiayu Cui, Juanru Cheng, Yu Pan, Ruimen Zhang, Sufang Yang, Lingxiu Zou\",\"doi\":\"10.1089/cell.2023.0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a gene with antiaging functions, sirtuin6 (<i>SIRT6</i>) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of <i>SIRT6</i> in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during <i>in vitro</i> cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of <i>SIRT6</i> and also aid in selecting donor cells for buffalo somatic cell reprogramming.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":\" \",\"pages\":\"277-287\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2023.0048\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2023.0048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
SIRT6 Knockdown in Buffalo Fetal Fibroblasts Exacerbates Premature Senescence Caused by DNA and Telomere Damage.
As a gene with antiaging functions, sirtuin6 (SIRT6) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of SIRT6 in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during in vitro cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of SIRT6 and also aid in selecting donor cells for buffalo somatic cell reprogramming.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.