儿茶酚胺分析检测方法及其预处理技术的最新进展。

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jie Jiang, Meng Zhang, Zhilong Xu, Yali Yang, Yimeng Wang, Hong Zhang, Kai Yu, Guangfeng Kan, Yanxiao Jiang
{"title":"儿茶酚胺分析检测方法及其预处理技术的最新进展。","authors":"Jie Jiang, Meng Zhang, Zhilong Xu, Yali Yang, Yimeng Wang, Hong Zhang, Kai Yu, Guangfeng Kan, Yanxiao Jiang","doi":"10.1080/10408347.2023.2258982","DOIUrl":null,"url":null,"abstract":"<p><p>Catecholamines (CAs), including adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that play a critical role in regulating the cardiovascular system, metabolism, and stress response in the human body. As promising methods for real-time monitoring of catecholamine neurotransmitters, LC-MS detectors have gained widespread acceptance and shown significant progress over the past few years. Other detection methods such as fluorescence detection, colorimetric assays, surface-enhanced Raman spectroscopy, and surface plasmon resonance spectroscopy have also been developed to varying degrees. In addition, efficient pretreatment technology for CAs is flourishing due to the increasing development of many highly selective and recoverable materials. There are a few articles that provide an overview of electrochemical detection and efficient enrichment, but a comprehensive summary focusing on analytical detection technology is lacking. Thus, this review provides a comprehensive summary of recent analytical detection technology research on CAs published between 2017 and 2022. The advantages and limitations of relevant methods including efficient pretreatment technologies for biological matrices and analytical methods used in combination with pretreatment technology have been discussed. Overall, this review article provides a better understanding of the importance of accurate CAs measurement and offers perspectives on the development of novel methods for disease diagnosis and research in this field.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-20"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Catecholamines Analytical Detection Methods and Their Pretreatment Technologies.\",\"authors\":\"Jie Jiang, Meng Zhang, Zhilong Xu, Yali Yang, Yimeng Wang, Hong Zhang, Kai Yu, Guangfeng Kan, Yanxiao Jiang\",\"doi\":\"10.1080/10408347.2023.2258982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Catecholamines (CAs), including adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that play a critical role in regulating the cardiovascular system, metabolism, and stress response in the human body. As promising methods for real-time monitoring of catecholamine neurotransmitters, LC-MS detectors have gained widespread acceptance and shown significant progress over the past few years. Other detection methods such as fluorescence detection, colorimetric assays, surface-enhanced Raman spectroscopy, and surface plasmon resonance spectroscopy have also been developed to varying degrees. In addition, efficient pretreatment technology for CAs is flourishing due to the increasing development of many highly selective and recoverable materials. There are a few articles that provide an overview of electrochemical detection and efficient enrichment, but a comprehensive summary focusing on analytical detection technology is lacking. Thus, this review provides a comprehensive summary of recent analytical detection technology research on CAs published between 2017 and 2022. The advantages and limitations of relevant methods including efficient pretreatment technologies for biological matrices and analytical methods used in combination with pretreatment technology have been discussed. Overall, this review article provides a better understanding of the importance of accurate CAs measurement and offers perspectives on the development of novel methods for disease diagnosis and research in this field.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2023.2258982\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2023.2258982","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

儿茶酚胺(CA),包括肾上腺素、去甲肾上腺素和多巴胺,是一种神经递质和激素,在调节人体心血管系统、代谢和应激反应方面发挥着关键作用。作为实时监测儿茶酚胺神经递质的有前途的方法,LC-MS检测器在过去几年中得到了广泛的接受,并取得了重大进展。其他检测方法,如荧光检测、比色测定、表面增强拉曼光谱和表面等离子体共振光谱也得到了不同程度的发展。此外,由于许多高选择性和可回收材料的不断发展,CA的高效预处理技术正在蓬勃发展。有几篇文章概述了电化学检测和高效富集,但缺乏对分析检测技术的全面总结。因此,这篇综述对2017年至2022年间发表的最近关于CA的分析检测技术研究进行了全面总结。讨论了相关方法的优点和局限性,包括生物基质的有效预处理技术以及与预处理技术相结合的分析方法。总之,这篇综述文章更好地理解了准确测量CAs的重要性,并为该领域疾病诊断和研究的新方法的发展提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Catecholamines Analytical Detection Methods and Their Pretreatment Technologies.

Catecholamines (CAs), including adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that play a critical role in regulating the cardiovascular system, metabolism, and stress response in the human body. As promising methods for real-time monitoring of catecholamine neurotransmitters, LC-MS detectors have gained widespread acceptance and shown significant progress over the past few years. Other detection methods such as fluorescence detection, colorimetric assays, surface-enhanced Raman spectroscopy, and surface plasmon resonance spectroscopy have also been developed to varying degrees. In addition, efficient pretreatment technology for CAs is flourishing due to the increasing development of many highly selective and recoverable materials. There are a few articles that provide an overview of electrochemical detection and efficient enrichment, but a comprehensive summary focusing on analytical detection technology is lacking. Thus, this review provides a comprehensive summary of recent analytical detection technology research on CAs published between 2017 and 2022. The advantages and limitations of relevant methods including efficient pretreatment technologies for biological matrices and analytical methods used in combination with pretreatment technology have been discussed. Overall, this review article provides a better understanding of the importance of accurate CAs measurement and offers perspectives on the development of novel methods for disease diagnosis and research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信