阐明磁性纳米盘介导的磁机械神经调控过程中的机械传导过程。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Cellular and molecular bioengineering Pub Date : 2023-09-20 eCollection Date: 2023-08-01 DOI:10.1007/s12195-023-00786-8
Amanda Gomez, Nicolas Muzzio, Ania Dudek, Athena Santi, Carolina Redondo, Raquel Zurbano, Rafael Morales, Gabriela Romero
{"title":"阐明磁性纳米盘介导的磁机械神经调控过程中的机械传导过程。","authors":"Amanda Gomez, Nicolas Muzzio, Ania Dudek, Athena Santi, Carolina Redondo, Raquel Zurbano, Rafael Morales, Gabriela Romero","doi":"10.1007/s12195-023-00786-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation.</p><p><strong>Methods: </strong>MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation.</p><p><strong>Results: </strong>Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant.</p><p><strong>Conclusions: </strong>Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00786-8.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs.\",\"authors\":\"Amanda Gomez, Nicolas Muzzio, Ania Dudek, Athena Santi, Carolina Redondo, Raquel Zurbano, Rafael Morales, Gabriela Romero\",\"doi\":\"10.1007/s12195-023-00786-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation.</p><p><strong>Methods: </strong>MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation.</p><p><strong>Results: </strong>Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant.</p><p><strong>Conclusions: </strong>Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00786-8.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-023-00786-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-023-00786-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:神经信号的非侵入性细胞类型特异性操作在基础神经科学研究和开发神经疾病治疗方法中至关重要。磁性纳米技术已经成为具有高度时空控制的非侵入性神经调控方法。我们最近开发了一种利用微型磁盘(MD)和低强度交变磁场(AMF)的无线力诱导神经刺激平台。当靶向细胞膜时,MDs-AMFs触发的机械激活增强了特定的细胞膜受体,导致细胞去极化。尽管很有前景,但了解机械力在磁机械神经调控中的作用及其对分子信号的转导对于其优化和未来的翻译至关重要。方法:使用自上而下的光刻技术制造MD,用聚合物和抗体进行功能化,并对其物理性能进行表征。与MD和跨膜蛋白化学抑制剂共培养的原代皮层神经元受到20s脉冲的弱AMF(18mT,6Hz)。在AMFs刺激过程中记录钙细胞活性。结果:AMFs触发靶向MD的致动可诱发原代大鼠皮层神经元的神经元活动。离子通道化学抑制表明,磁机械神经调控是由Piezo1和TRPC1机械敏感离子通道上的MD驱动引起的。驱动机制取决于MDs的大小,其中细胞膜拉伸和MDs扭矩引起的应力是最主要的。结论:磁机械神经调控表现出巨大的潜力,因为它满足了可忽略的加热(ΔT 补充信息:在线版本包含补充材料,请访问10.1007/s12195-023-00786-8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs.

Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs.

Purpose: Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation.

Methods: MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation.

Results: Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant.

Conclusions: Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-023-00786-8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信