Yi Luo, Min Chen, Yujie Jiang, Weiqi Wang, Heping Wang, Li Deng, Zuguo Zhao
{"title":"一株吲哚根金杆菌临床菌株的基因组及抗替加环素机制研究。","authors":"Yi Luo, Min Chen, Yujie Jiang, Weiqi Wang, Heping Wang, Li Deng, Zuguo Zhao","doi":"10.1089/mdr.2023.0129","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> <i>Chryseobacterium indologenes</i> is a clinically relevant microorganism that has been on the rise, with multidrug-resistant (MDR) strains being reported. <i>C. indologenes</i> carrying <i>tet(X2)</i> has been demonstrated to be resistant to the antibiotic tigecycline, yet, sensitive to all other members of the tetracycline family. This inconsistency in resistance prompts an inquiry into the contribution of <i>tet(X2)</i> to tigecycline resistance in <i>C. indologenes</i>. <b><i>Materials and Methods:</i></b> In this study, we report on a comprehensive analysis of the genomic mechanisms underlying tigecycline resistance in a MDR <i>C. indologenes</i> strain (CI3125) that was resistant to tigecycline but sensitive to tetracycline, doxycycline, and minocycline. We used whole-genome sequencing, quantitative reverse transcription PCR, Western blot, antibiotic-degrading tests, and efflux pump inhibiting tests to reveal the mechanism of tigecycline resistance in <i>C. indologenes</i> and elucidate the inconsistency in the antibiotic resistance mechanism for the tetracycline family. <b><i>Results:</i></b> Our findings demonstrate that CI3125 carries 60 antibiotic resistance genes distributed on 6 different genetic islands (GIs), with the potential for horizontal transfer. Notably, the <i>tet(X2)</i> gene is located on GI06 of CI3125. Genetic environment analysis of <i>tet(X2)</i> showed that all <i>tet(X2)</i> genes in Flavobacterium and Bacteroides share a conservative and functional ribosome-binding site upstream. Contrary to expectation, our RT-qPCR showed that <i>tet(X2)</i> was not transcribed in CI3125, and Western blot suggested the absence of <i>tet(X2)</i> protein in CI3125. Rather, we demonstrate that minimum inhibitory concentration values for tigecycline decreased two- to eight<b>-</b>folds in the presence of five different efflux pump inhibitors [1-(1-naphthyl- methyl)-piperazine, phenyl-arginine-β-naphthylamide, verapamil, reserpine, and carbonyl cyanide 3-chlorophenylhydrazone]. This finding provides evidence for the involvement of efflux pumps in tigecycline resistance, which is likely to be a universal mechanism among <i>C. indologenes</i>. Our study proposes that the inconsistency in resistance to the tetracycline family in CI3125 may be ascribed to the silence of <i>tet(X2)</i> and the functions of efflux pumps for tigecycline. <b><i>Conclusions:</i></b> Overall, our results highlight the importance of genomic approaches in understanding the underlying mechanisms of antibiotic resistance in clinically relevant microorganisms. While <i>tet(X2)</i> in CI3125 is silent, our findings suggest that it may be horizontally spread through GIs. Hence, our findings have significant implications for the management of <i>C. indologenes</i> infections in clinical settings.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"541-551"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Genome and Mechanism of Tigecycline Resistance of a Clinical <i>Chryseobacterium indologenes</i> Strain.\",\"authors\":\"Yi Luo, Min Chen, Yujie Jiang, Weiqi Wang, Heping Wang, Li Deng, Zuguo Zhao\",\"doi\":\"10.1089/mdr.2023.0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Purpose:</i></b> <i>Chryseobacterium indologenes</i> is a clinically relevant microorganism that has been on the rise, with multidrug-resistant (MDR) strains being reported. <i>C. indologenes</i> carrying <i>tet(X2)</i> has been demonstrated to be resistant to the antibiotic tigecycline, yet, sensitive to all other members of the tetracycline family. This inconsistency in resistance prompts an inquiry into the contribution of <i>tet(X2)</i> to tigecycline resistance in <i>C. indologenes</i>. <b><i>Materials and Methods:</i></b> In this study, we report on a comprehensive analysis of the genomic mechanisms underlying tigecycline resistance in a MDR <i>C. indologenes</i> strain (CI3125) that was resistant to tigecycline but sensitive to tetracycline, doxycycline, and minocycline. We used whole-genome sequencing, quantitative reverse transcription PCR, Western blot, antibiotic-degrading tests, and efflux pump inhibiting tests to reveal the mechanism of tigecycline resistance in <i>C. indologenes</i> and elucidate the inconsistency in the antibiotic resistance mechanism for the tetracycline family. <b><i>Results:</i></b> Our findings demonstrate that CI3125 carries 60 antibiotic resistance genes distributed on 6 different genetic islands (GIs), with the potential for horizontal transfer. Notably, the <i>tet(X2)</i> gene is located on GI06 of CI3125. Genetic environment analysis of <i>tet(X2)</i> showed that all <i>tet(X2)</i> genes in Flavobacterium and Bacteroides share a conservative and functional ribosome-binding site upstream. Contrary to expectation, our RT-qPCR showed that <i>tet(X2)</i> was not transcribed in CI3125, and Western blot suggested the absence of <i>tet(X2)</i> protein in CI3125. Rather, we demonstrate that minimum inhibitory concentration values for tigecycline decreased two- to eight<b>-</b>folds in the presence of five different efflux pump inhibitors [1-(1-naphthyl- methyl)-piperazine, phenyl-arginine-β-naphthylamide, verapamil, reserpine, and carbonyl cyanide 3-chlorophenylhydrazone]. This finding provides evidence for the involvement of efflux pumps in tigecycline resistance, which is likely to be a universal mechanism among <i>C. indologenes</i>. Our study proposes that the inconsistency in resistance to the tetracycline family in CI3125 may be ascribed to the silence of <i>tet(X2)</i> and the functions of efflux pumps for tigecycline. <b><i>Conclusions:</i></b> Overall, our results highlight the importance of genomic approaches in understanding the underlying mechanisms of antibiotic resistance in clinically relevant microorganisms. While <i>tet(X2)</i> in CI3125 is silent, our findings suggest that it may be horizontally spread through GIs. Hence, our findings have significant implications for the management of <i>C. indologenes</i> infections in clinical settings.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"541-551\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2023.0129\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2023.0129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Study on the Genome and Mechanism of Tigecycline Resistance of a Clinical Chryseobacterium indologenes Strain.
Purpose:Chryseobacterium indologenes is a clinically relevant microorganism that has been on the rise, with multidrug-resistant (MDR) strains being reported. C. indologenes carrying tet(X2) has been demonstrated to be resistant to the antibiotic tigecycline, yet, sensitive to all other members of the tetracycline family. This inconsistency in resistance prompts an inquiry into the contribution of tet(X2) to tigecycline resistance in C. indologenes. Materials and Methods: In this study, we report on a comprehensive analysis of the genomic mechanisms underlying tigecycline resistance in a MDR C. indologenes strain (CI3125) that was resistant to tigecycline but sensitive to tetracycline, doxycycline, and minocycline. We used whole-genome sequencing, quantitative reverse transcription PCR, Western blot, antibiotic-degrading tests, and efflux pump inhibiting tests to reveal the mechanism of tigecycline resistance in C. indologenes and elucidate the inconsistency in the antibiotic resistance mechanism for the tetracycline family. Results: Our findings demonstrate that CI3125 carries 60 antibiotic resistance genes distributed on 6 different genetic islands (GIs), with the potential for horizontal transfer. Notably, the tet(X2) gene is located on GI06 of CI3125. Genetic environment analysis of tet(X2) showed that all tet(X2) genes in Flavobacterium and Bacteroides share a conservative and functional ribosome-binding site upstream. Contrary to expectation, our RT-qPCR showed that tet(X2) was not transcribed in CI3125, and Western blot suggested the absence of tet(X2) protein in CI3125. Rather, we demonstrate that minimum inhibitory concentration values for tigecycline decreased two- to eight-folds in the presence of five different efflux pump inhibitors [1-(1-naphthyl- methyl)-piperazine, phenyl-arginine-β-naphthylamide, verapamil, reserpine, and carbonyl cyanide 3-chlorophenylhydrazone]. This finding provides evidence for the involvement of efflux pumps in tigecycline resistance, which is likely to be a universal mechanism among C. indologenes. Our study proposes that the inconsistency in resistance to the tetracycline family in CI3125 may be ascribed to the silence of tet(X2) and the functions of efflux pumps for tigecycline. Conclusions: Overall, our results highlight the importance of genomic approaches in understanding the underlying mechanisms of antibiotic resistance in clinically relevant microorganisms. While tet(X2) in CI3125 is silent, our findings suggest that it may be horizontally spread through GIs. Hence, our findings have significant implications for the management of C. indologenes infections in clinical settings.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.