{"title":"打开健身移动应用程序中不满意和满意的驱动因素。","authors":"Minseong Kim, Sae-Mi Lee","doi":"10.3390/bs13090782","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.</p>","PeriodicalId":8742,"journal":{"name":"Behavioral Sciences","volume":"13 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application.\",\"authors\":\"Minseong Kim, Sae-Mi Lee\",\"doi\":\"10.3390/bs13090782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.</p>\",\"PeriodicalId\":8742,\"journal\":{\"name\":\"Behavioral Sciences\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3390/bs13090782\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/bs13090782","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application.
This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.