{"title":"溶体ABCC3、ABCC5和ABCC10的活性负责多柔比星和紫杉醇-Oregongreen488在紫杉醇耐药癌症细胞系中的溶体滞留。","authors":"Karolina Gronkowska, Sylwia Michlewska, Agnieszka Robaszkiewicz","doi":"10.33594/000000663","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Cancer cell multidrug resistance induced by paclitaxel contributes to the high failure rates of chemotherapy and relapse of the disease. Several mechanisms have been described that underlie the observed resistance, including the overexpression of ABCB1 (P-glycoprotein), which represents an ATP-binding cassette (ABC) transmembrane protein, and its functional occurrence in lysosomal membranes is linked to drug accumulation in these organelles.</p><p><strong>Methods: </strong>Using clinically-relevant models of paclitaxel-resistant triple-negative breast cancer and non-small cell lung cancer cell lines, we provide evidence for the role of ABCC subfamily members in the lysosomal sequestration of drugs in multidrug resistant phenotypes. Proteins expression level and its cellular localisation was measured using Western Blot and confocal microscopy. Drug accumulation was analysed by confocal microscopy and flow cytometry. Drug cytotoxicity was tested using resasurin assay and anexin V propidium iodide staining.</p><p><strong>Results: </strong>Regardless of the alteration in gene expression, paclitaxel induced the intracellular redistribution of ABCC3, ABCC5 and ABCC10 and their enrichment in lysosomes. The use of ABCC inhibitors and transient silencing of these three genes limited the accumulation of doxorubicin and paclitaxel-OregonGreen488 in lysosomes, while having little impact on the total drug level inside cells. The cancer cells were also sensitized to various structurally unrelated chemotherapeutics of differing acidity.</p><p><strong>Conclusion: </strong>The results suggest that lysosome membranes anchored ABCC proteins which remained functionally active and were capable to load chemotherapeutics into lysosomes in paclitaxel-resistant cancer cells. Therefore, targeting of lysosomal ABCC transporters may help to overcome paclitaxel-induced resistance by reducing the accumulation of drugs in lysosomes.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity of Lysosomal ABCC3, ABCC5 and ABCC10 is Responsible for Lysosomal Sequestration of Doxorubicin and Paclitaxel-Oregongreen488 in Paclitaxel-Resistant Cancer Cell Lines.\",\"authors\":\"Karolina Gronkowska, Sylwia Michlewska, Agnieszka Robaszkiewicz\",\"doi\":\"10.33594/000000663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Cancer cell multidrug resistance induced by paclitaxel contributes to the high failure rates of chemotherapy and relapse of the disease. Several mechanisms have been described that underlie the observed resistance, including the overexpression of ABCB1 (P-glycoprotein), which represents an ATP-binding cassette (ABC) transmembrane protein, and its functional occurrence in lysosomal membranes is linked to drug accumulation in these organelles.</p><p><strong>Methods: </strong>Using clinically-relevant models of paclitaxel-resistant triple-negative breast cancer and non-small cell lung cancer cell lines, we provide evidence for the role of ABCC subfamily members in the lysosomal sequestration of drugs in multidrug resistant phenotypes. Proteins expression level and its cellular localisation was measured using Western Blot and confocal microscopy. Drug accumulation was analysed by confocal microscopy and flow cytometry. Drug cytotoxicity was tested using resasurin assay and anexin V propidium iodide staining.</p><p><strong>Results: </strong>Regardless of the alteration in gene expression, paclitaxel induced the intracellular redistribution of ABCC3, ABCC5 and ABCC10 and their enrichment in lysosomes. The use of ABCC inhibitors and transient silencing of these three genes limited the accumulation of doxorubicin and paclitaxel-OregonGreen488 in lysosomes, while having little impact on the total drug level inside cells. The cancer cells were also sensitized to various structurally unrelated chemotherapeutics of differing acidity.</p><p><strong>Conclusion: </strong>The results suggest that lysosome membranes anchored ABCC proteins which remained functionally active and were capable to load chemotherapeutics into lysosomes in paclitaxel-resistant cancer cells. Therefore, targeting of lysosomal ABCC transporters may help to overcome paclitaxel-induced resistance by reducing the accumulation of drugs in lysosomes.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Activity of Lysosomal ABCC3, ABCC5 and ABCC10 is Responsible for Lysosomal Sequestration of Doxorubicin and Paclitaxel-Oregongreen488 in Paclitaxel-Resistant Cancer Cell Lines.
Background/aims: Cancer cell multidrug resistance induced by paclitaxel contributes to the high failure rates of chemotherapy and relapse of the disease. Several mechanisms have been described that underlie the observed resistance, including the overexpression of ABCB1 (P-glycoprotein), which represents an ATP-binding cassette (ABC) transmembrane protein, and its functional occurrence in lysosomal membranes is linked to drug accumulation in these organelles.
Methods: Using clinically-relevant models of paclitaxel-resistant triple-negative breast cancer and non-small cell lung cancer cell lines, we provide evidence for the role of ABCC subfamily members in the lysosomal sequestration of drugs in multidrug resistant phenotypes. Proteins expression level and its cellular localisation was measured using Western Blot and confocal microscopy. Drug accumulation was analysed by confocal microscopy and flow cytometry. Drug cytotoxicity was tested using resasurin assay and anexin V propidium iodide staining.
Results: Regardless of the alteration in gene expression, paclitaxel induced the intracellular redistribution of ABCC3, ABCC5 and ABCC10 and their enrichment in lysosomes. The use of ABCC inhibitors and transient silencing of these three genes limited the accumulation of doxorubicin and paclitaxel-OregonGreen488 in lysosomes, while having little impact on the total drug level inside cells. The cancer cells were also sensitized to various structurally unrelated chemotherapeutics of differing acidity.
Conclusion: The results suggest that lysosome membranes anchored ABCC proteins which remained functionally active and were capable to load chemotherapeutics into lysosomes in paclitaxel-resistant cancer cells. Therefore, targeting of lysosomal ABCC transporters may help to overcome paclitaxel-induced resistance by reducing the accumulation of drugs in lysosomes.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.