Anna Skupien-Jaroszek, Andrzej A Szczepankiewicz, Andrzej Rysz, Andrzej Marchel, Ewa Matyja, Wiesława Grajkowska, Grzegorz M Wilczynski, Joanna Dzwonek
{"title":"癫痫发作时神经元高尔基体的形态学改变。","authors":"Anna Skupien-Jaroszek, Andrzej A Szczepankiewicz, Andrzej Rysz, Andrzej Marchel, Ewa Matyja, Wiesława Grajkowska, Grzegorz M Wilczynski, Joanna Dzwonek","doi":"10.1111/nan.12940","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy.</p><p><strong>Methods: </strong>Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca<sup>2+</sup> chelator BAPTA-AM in primary hippocampal neurons upon activation were performed.</p><p><strong>Results: </strong>We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM.</p><p><strong>Conclusions: </strong>In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca<sup>2+</sup> is indispensable for these KA-induced morphological alterations of GA in vitro.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":" ","pages":"e12940"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphological alterations of the neuronal Golgi apparatus upon seizures.\",\"authors\":\"Anna Skupien-Jaroszek, Andrzej A Szczepankiewicz, Andrzej Rysz, Andrzej Marchel, Ewa Matyja, Wiesława Grajkowska, Grzegorz M Wilczynski, Joanna Dzwonek\",\"doi\":\"10.1111/nan.12940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy.</p><p><strong>Methods: </strong>Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca<sup>2+</sup> chelator BAPTA-AM in primary hippocampal neurons upon activation were performed.</p><p><strong>Results: </strong>We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM.</p><p><strong>Conclusions: </strong>In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca<sup>2+</sup> is indispensable for these KA-induced morphological alterations of GA in vitro.</p>\",\"PeriodicalId\":19151,\"journal\":{\"name\":\"Neuropathology and Applied Neurobiology\",\"volume\":\" \",\"pages\":\"e12940\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology and Applied Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nan.12940\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12940","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Morphological alterations of the neuronal Golgi apparatus upon seizures.
Aims: Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy.
Methods: Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca2+ chelator BAPTA-AM in primary hippocampal neurons upon activation were performed.
Results: We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM.
Conclusions: In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca2+ is indispensable for these KA-induced morphological alterations of GA in vitro.
期刊介绍:
Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.