{"title":"一种基于边缘特征残差融合的细胞图像分割方法。","authors":"Jinlian Du, Yanqiu Zhang, Xueyun Jin, Xiao Zhang","doi":"10.1016/j.ymeth.2023.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, cancer has seriously damaged human health, and the morphological structure of cells serves as an important basis for cancer diagnosis and grading. Automatic cell segmentation based on deep learning has become an important means of computer-aided pathological diagnosis. Aiming at the existing problems of rough segmentation boundaries and inaccurate segmentation in cell image segmentation, this paper designs a cell image segmentation network model (ERF-TransUNet) based on edge feature residual fusion from the perspective of mutual complementarity and constraint between edge features and object features. The model uses a hybrid architecture of CNN and Transformer to extract multi-scale features from cell images, and adds independent edge feature extraction modules and residual fusion modules to enhance the extraction of edge features and their constraints when fusing with cell object features, improving the accuracy of cell contour positioning. Through experiments on two gland cell datasets, CRAG and Glas, and comparing the segmentation effects with current popular deep learning models, the network model proposed in this paper has achieved good performance in both Dice coefficient and Hausdorff distance, which can effectively improve the segmentation effect of cell images.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"219 ","pages":"Pages 111-118"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202323001639/pdfft?md5=ecf65e09185af626a206f62bc046fc3c&pid=1-s2.0-S1046202323001639-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A cell image segmentation method based on edge feature residual fusion\",\"authors\":\"Jinlian Du, Yanqiu Zhang, Xueyun Jin, Xiao Zhang\",\"doi\":\"10.1016/j.ymeth.2023.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, cancer has seriously damaged human health, and the morphological structure of cells serves as an important basis for cancer diagnosis and grading. Automatic cell segmentation based on deep learning has become an important means of computer-aided pathological diagnosis. Aiming at the existing problems of rough segmentation boundaries and inaccurate segmentation in cell image segmentation, this paper designs a cell image segmentation network model (ERF-TransUNet) based on edge feature residual fusion from the perspective of mutual complementarity and constraint between edge features and object features. The model uses a hybrid architecture of CNN and Transformer to extract multi-scale features from cell images, and adds independent edge feature extraction modules and residual fusion modules to enhance the extraction of edge features and their constraints when fusing with cell object features, improving the accuracy of cell contour positioning. Through experiments on two gland cell datasets, CRAG and Glas, and comparing the segmentation effects with current popular deep learning models, the network model proposed in this paper has achieved good performance in both Dice coefficient and Hausdorff distance, which can effectively improve the segmentation effect of cell images.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"219 \",\"pages\":\"Pages 111-118\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1046202323001639/pdfft?md5=ecf65e09185af626a206f62bc046fc3c&pid=1-s2.0-S1046202323001639-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202323001639\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202323001639","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A cell image segmentation method based on edge feature residual fusion
In recent years, cancer has seriously damaged human health, and the morphological structure of cells serves as an important basis for cancer diagnosis and grading. Automatic cell segmentation based on deep learning has become an important means of computer-aided pathological diagnosis. Aiming at the existing problems of rough segmentation boundaries and inaccurate segmentation in cell image segmentation, this paper designs a cell image segmentation network model (ERF-TransUNet) based on edge feature residual fusion from the perspective of mutual complementarity and constraint between edge features and object features. The model uses a hybrid architecture of CNN and Transformer to extract multi-scale features from cell images, and adds independent edge feature extraction modules and residual fusion modules to enhance the extraction of edge features and their constraints when fusing with cell object features, improving the accuracy of cell contour positioning. Through experiments on two gland cell datasets, CRAG and Glas, and comparing the segmentation effects with current popular deep learning models, the network model proposed in this paper has achieved good performance in both Dice coefficient and Hausdorff distance, which can effectively improve the segmentation effect of cell images.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.