{"title":"酒精生物标志物CDT、EtG、EtS、5-HTOL和PEth的简史。","authors":"Alan Wayne Jones","doi":"10.1002/dta.3584","DOIUrl":null,"url":null,"abstract":"<p>This article traces the historical development of various biomarkers of acute and/or chronic alcohol consumption. Much of the research in this domain of clinical and laboratory medicine arose from clinics and laboratories in Sweden, as exemplified by carbohydrate deficient transferrin (CDT) and phosphatidylethanol (PEth). Extensive studies of other alcohol biomarkers, such as ethyl glucuronide (EtG), ethyl sulfate (EtS), and 5-hydroxytryptophol (5-HTOL), also derive from Sweden. The most obvious test of recent drinking is identification of ethanol in a sample of the person's blood, breath, or urine. However, because of continuous metabolism in the liver, ethanol is eliminated from the blood at a rate of 0.15 g/L/h (range 0.1–0.3 g/L/h), so obtaining positive results is not always possible. The widow of detection is increased by analysis of ethanol's non-oxidative metabolites (EtG and EtS), which are more slowly eliminated from the bloodstream. Likewise, an elevated ratio of serotonin metabolites in urine (5-HTOL/5-HIAA) can help to disclose recent drinking after ethanol is no longer measurable in body fluids. A highly specific biomarker of hazardous drinking is CDT, a serum glycoprotein (transferrin), with a deficiency in its N-linked glycosylation. Another widely acclaimed biomarker is PEth, an abnormal phospholipid synthesized in cell membranes when people drink excessively, having a long elimination half-life (median ~6 days) during abstinence. Research on the subject of alcohol biomarkers has increased appreciably and is now an important area of drug testing and analysis.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":"16 6","pages":"570-587"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief history of the alcohol biomarkers CDT, EtG, EtS, 5-HTOL, and PEth\",\"authors\":\"Alan Wayne Jones\",\"doi\":\"10.1002/dta.3584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article traces the historical development of various biomarkers of acute and/or chronic alcohol consumption. Much of the research in this domain of clinical and laboratory medicine arose from clinics and laboratories in Sweden, as exemplified by carbohydrate deficient transferrin (CDT) and phosphatidylethanol (PEth). Extensive studies of other alcohol biomarkers, such as ethyl glucuronide (EtG), ethyl sulfate (EtS), and 5-hydroxytryptophol (5-HTOL), also derive from Sweden. The most obvious test of recent drinking is identification of ethanol in a sample of the person's blood, breath, or urine. However, because of continuous metabolism in the liver, ethanol is eliminated from the blood at a rate of 0.15 g/L/h (range 0.1–0.3 g/L/h), so obtaining positive results is not always possible. The widow of detection is increased by analysis of ethanol's non-oxidative metabolites (EtG and EtS), which are more slowly eliminated from the bloodstream. Likewise, an elevated ratio of serotonin metabolites in urine (5-HTOL/5-HIAA) can help to disclose recent drinking after ethanol is no longer measurable in body fluids. A highly specific biomarker of hazardous drinking is CDT, a serum glycoprotein (transferrin), with a deficiency in its N-linked glycosylation. Another widely acclaimed biomarker is PEth, an abnormal phospholipid synthesized in cell membranes when people drink excessively, having a long elimination half-life (median ~6 days) during abstinence. Research on the subject of alcohol biomarkers has increased appreciably and is now an important area of drug testing and analysis.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\"16 6\",\"pages\":\"570-587\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dta.3584\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dta.3584","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Brief history of the alcohol biomarkers CDT, EtG, EtS, 5-HTOL, and PEth
This article traces the historical development of various biomarkers of acute and/or chronic alcohol consumption. Much of the research in this domain of clinical and laboratory medicine arose from clinics and laboratories in Sweden, as exemplified by carbohydrate deficient transferrin (CDT) and phosphatidylethanol (PEth). Extensive studies of other alcohol biomarkers, such as ethyl glucuronide (EtG), ethyl sulfate (EtS), and 5-hydroxytryptophol (5-HTOL), also derive from Sweden. The most obvious test of recent drinking is identification of ethanol in a sample of the person's blood, breath, or urine. However, because of continuous metabolism in the liver, ethanol is eliminated from the blood at a rate of 0.15 g/L/h (range 0.1–0.3 g/L/h), so obtaining positive results is not always possible. The widow of detection is increased by analysis of ethanol's non-oxidative metabolites (EtG and EtS), which are more slowly eliminated from the bloodstream. Likewise, an elevated ratio of serotonin metabolites in urine (5-HTOL/5-HIAA) can help to disclose recent drinking after ethanol is no longer measurable in body fluids. A highly specific biomarker of hazardous drinking is CDT, a serum glycoprotein (transferrin), with a deficiency in its N-linked glycosylation. Another widely acclaimed biomarker is PEth, an abnormal phospholipid synthesized in cell membranes when people drink excessively, having a long elimination half-life (median ~6 days) during abstinence. Research on the subject of alcohol biomarkers has increased appreciably and is now an important area of drug testing and analysis.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.