{"title":"蜕皮甾酮的人体代谢研究。","authors":"Thomas Piper, Mario Thevis","doi":"10.1002/dta.3582","DOIUrl":null,"url":null,"abstract":"<p>The possible performance-enhancing effects and medical benefits of ecdysterone (ECDY) have been discussed several times throughout the last decades. In 2020, the World Anti-Doping Agency include ECDY in their monitoring programme and continued this prevalence study until now. Only little is known about the human metabolism of ECDY besides the first study performed on human subjects in the field of sports drug testing that was already conducted in 2001. Aim of this study was the in-depth investigation on human ECDY metabolism to improve its detectability and to support the decision-making processes as to how ECDY can be implemented most effectively into sports drug testing regulations. In a first trial, one male volunteer was administered with threefold deuterated ECDY to enable the detection and potential identification of all urinary metabolites still comprising the deuterium label by employing hydrogen isotope ratio mass spectrometry and high-resolution/high-accuracy mass spectrometry. Samples were collected for up to 14 days, and metabolites excreted unconjugated, glucuronidated, and sulphated were investigated. The detected deuterated metabolites were confirmed in a second administration trial encompassing two male and one female volunteers. After the administration of 50 mg of unlabelled ECDY, urine samples were collected for up to 7 days. Besides the already described urinary metabolites of ECDY, more than 20 new metabolites were detected encompassing all expected metabolic conversions including side chain cleavage at C21. A large interindividual variation in the amounts of excreted metabolites was visible, and considerable differences in abundances of early- and late-excretion phase metabolites were observed.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":"15 11-12","pages":"1503-1520"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/dta.3582","citationCount":"0","resultStr":"{\"title\":\"Investigations into the human metabolism of ecdysterone\",\"authors\":\"Thomas Piper, Mario Thevis\",\"doi\":\"10.1002/dta.3582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possible performance-enhancing effects and medical benefits of ecdysterone (ECDY) have been discussed several times throughout the last decades. In 2020, the World Anti-Doping Agency include ECDY in their monitoring programme and continued this prevalence study until now. Only little is known about the human metabolism of ECDY besides the first study performed on human subjects in the field of sports drug testing that was already conducted in 2001. Aim of this study was the in-depth investigation on human ECDY metabolism to improve its detectability and to support the decision-making processes as to how ECDY can be implemented most effectively into sports drug testing regulations. In a first trial, one male volunteer was administered with threefold deuterated ECDY to enable the detection and potential identification of all urinary metabolites still comprising the deuterium label by employing hydrogen isotope ratio mass spectrometry and high-resolution/high-accuracy mass spectrometry. Samples were collected for up to 14 days, and metabolites excreted unconjugated, glucuronidated, and sulphated were investigated. The detected deuterated metabolites were confirmed in a second administration trial encompassing two male and one female volunteers. After the administration of 50 mg of unlabelled ECDY, urine samples were collected for up to 7 days. Besides the already described urinary metabolites of ECDY, more than 20 new metabolites were detected encompassing all expected metabolic conversions including side chain cleavage at C21. A large interindividual variation in the amounts of excreted metabolites was visible, and considerable differences in abundances of early- and late-excretion phase metabolites were observed.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\"15 11-12\",\"pages\":\"1503-1520\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/dta.3582\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dta.3582\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dta.3582","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigations into the human metabolism of ecdysterone
The possible performance-enhancing effects and medical benefits of ecdysterone (ECDY) have been discussed several times throughout the last decades. In 2020, the World Anti-Doping Agency include ECDY in their monitoring programme and continued this prevalence study until now. Only little is known about the human metabolism of ECDY besides the first study performed on human subjects in the field of sports drug testing that was already conducted in 2001. Aim of this study was the in-depth investigation on human ECDY metabolism to improve its detectability and to support the decision-making processes as to how ECDY can be implemented most effectively into sports drug testing regulations. In a first trial, one male volunteer was administered with threefold deuterated ECDY to enable the detection and potential identification of all urinary metabolites still comprising the deuterium label by employing hydrogen isotope ratio mass spectrometry and high-resolution/high-accuracy mass spectrometry. Samples were collected for up to 14 days, and metabolites excreted unconjugated, glucuronidated, and sulphated were investigated. The detected deuterated metabolites were confirmed in a second administration trial encompassing two male and one female volunteers. After the administration of 50 mg of unlabelled ECDY, urine samples were collected for up to 7 days. Besides the already described urinary metabolites of ECDY, more than 20 new metabolites were detected encompassing all expected metabolic conversions including side chain cleavage at C21. A large interindividual variation in the amounts of excreted metabolites was visible, and considerable differences in abundances of early- and late-excretion phase metabolites were observed.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.