{"title":"Rspo1和Rspo3是在小鼠胚胎中形成感觉谱系神经嵴所必需的。","authors":"Takuma Shinozuka, Motoko Aoki, Yudai Hatakeyama, Noriaki Sasai, Hitoshi Okamoto, Shinji Takada","doi":"10.1002/dvdy.659","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>R-spondins (Rspos) are secreted proteins that modulate Wnt/β-catenin signaling. At the early stages of spinal cord development, <i>Wnts (Wnt1, Wnt3a)</i> and <i>Rspos (Rspo1, Rspo3)</i> are co-expressed in the roof plate, suggesting that <i>Rspos</i> are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Here, we found that <i>Rspo1</i> and <i>Rspo3</i>, as well as <i>Wnt1</i> and <i>Wnt3a</i>, maintained roof-plate-specific expression until late embryonic stages. <i>Rspo1-</i> and <i>Rspo3</i>-double-knock-out (dKO) embryos partially exhibited the phenotype of <i>Wnt1</i> and <i>Wnt3a</i> dKO embryos. While the number of <i>Ngn2</i>-positive sensory lineage neural crest cells is reduced in <i>Rspo</i>-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/β-catenin signaling was not obviously changed in developing spinal cord of dKO embryos.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our results show that <i>Rspo1</i> and <i>Rspo3</i> are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/β-catenin signaling in a context-dependent manner.</p>\n </section>\n </div>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"253 4","pages":"435-446"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.659","citationCount":"0","resultStr":"{\"title\":\"Rspo1 and Rspo3 are required for sensory lineage neural crest formation in mouse embryos\",\"authors\":\"Takuma Shinozuka, Motoko Aoki, Yudai Hatakeyama, Noriaki Sasai, Hitoshi Okamoto, Shinji Takada\",\"doi\":\"10.1002/dvdy.659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>R-spondins (Rspos) are secreted proteins that modulate Wnt/β-catenin signaling. At the early stages of spinal cord development, <i>Wnts (Wnt1, Wnt3a)</i> and <i>Rspos (Rspo1, Rspo3)</i> are co-expressed in the roof plate, suggesting that <i>Rspos</i> are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Here, we found that <i>Rspo1</i> and <i>Rspo3</i>, as well as <i>Wnt1</i> and <i>Wnt3a</i>, maintained roof-plate-specific expression until late embryonic stages. <i>Rspo1-</i> and <i>Rspo3</i>-double-knock-out (dKO) embryos partially exhibited the phenotype of <i>Wnt1</i> and <i>Wnt3a</i> dKO embryos. While the number of <i>Ngn2</i>-positive sensory lineage neural crest cells is reduced in <i>Rspo</i>-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/β-catenin signaling was not obviously changed in developing spinal cord of dKO embryos.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our results show that <i>Rspo1</i> and <i>Rspo3</i> are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/β-catenin signaling in a context-dependent manner.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11247,\"journal\":{\"name\":\"Developmental Dynamics\",\"volume\":\"253 4\",\"pages\":\"435-446\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.659\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.659","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Rspo1 and Rspo3 are required for sensory lineage neural crest formation in mouse embryos
Background
R-spondins (Rspos) are secreted proteins that modulate Wnt/β-catenin signaling. At the early stages of spinal cord development, Wnts (Wnt1, Wnt3a) and Rspos (Rspo1, Rspo3) are co-expressed in the roof plate, suggesting that Rspos are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands.
Results
Here, we found that Rspo1 and Rspo3, as well as Wnt1 and Wnt3a, maintained roof-plate-specific expression until late embryonic stages. Rspo1- and Rspo3-double-knock-out (dKO) embryos partially exhibited the phenotype of Wnt1 and Wnt3a dKO embryos. While the number of Ngn2-positive sensory lineage neural crest cells is reduced in Rspo-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/β-catenin signaling was not obviously changed in developing spinal cord of dKO embryos.
Conclusions
Our results show that Rspo1 and Rspo3 are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/β-catenin signaling in a context-dependent manner.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.