硅阳极离子导电层的合理设计使锂离子电池具有优异的稳定性。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2023-09-27 DOI:10.1002/smll.202306428
Ziyang Wang, Meng Yao, Hang Luo, Changhaoyue Xu, Hao Tian, Qian Wang, Hao Wu, Qianyu Zhang, Yuping Wu
{"title":"硅阳极离子导电层的合理设计使锂离子电池具有优异的稳定性。","authors":"Ziyang Wang,&nbsp;Meng Yao,&nbsp;Hang Luo,&nbsp;Changhaoyue Xu,&nbsp;Hao Tian,&nbsp;Qian Wang,&nbsp;Hao Wu,&nbsp;Qianyu Zhang,&nbsp;Yuping Wu","doi":"10.1002/smll.202306428","DOIUrl":null,"url":null,"abstract":"<p>Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core–shell heterostructure, Si as the core and V<sub>3</sub>O<sub>4</sub>@C as the shell (Si@V<sub>3</sub>O<sub>4</sub>@C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V<sub>3</sub>O<sub>4</sub> layer facilitates the rapid Li<sup>+</sup> diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V<sub>3</sub>O<sub>4</sub>@C electrode exhibits an excellent cycling stability of 1061.1 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V<sub>3</sub>O<sub>4</sub>@C||LiFePO<sub>4</sub> full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 5","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries\",\"authors\":\"Ziyang Wang,&nbsp;Meng Yao,&nbsp;Hang Luo,&nbsp;Changhaoyue Xu,&nbsp;Hao Tian,&nbsp;Qian Wang,&nbsp;Hao Wu,&nbsp;Qianyu Zhang,&nbsp;Yuping Wu\",\"doi\":\"10.1002/smll.202306428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core–shell heterostructure, Si as the core and V<sub>3</sub>O<sub>4</sub>@C as the shell (Si@V<sub>3</sub>O<sub>4</sub>@C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V<sub>3</sub>O<sub>4</sub> layer facilitates the rapid Li<sup>+</sup> diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V<sub>3</sub>O<sub>4</sub>@C electrode exhibits an excellent cycling stability of 1061.1 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V<sub>3</sub>O<sub>4</sub>@C||LiFePO<sub>4</sub> full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202306428\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202306428","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)由于其高理论容量而被认为是下一代高能密度锂离子电池(LIB)的一种有前途的商业材料。然而,严重的体积变化和较差的导电性阻碍了硅阳极的实际应用。本文提出了一种以Si为核、V3 O4@C为壳的新型核壳异质结构(Si@V3O4@C)通过简单的溶剂热反应提出。理论模拟表明,原位形成的V3O4层促进了Li+的快速扩散,降低了Li从碳壳向内核传输的能垒。由无定形碳构建的三维网络结构可以有效提高电子导电性和结构稳定性。得益于合理设计的结构Si@V3O4@C电极在0.5A g-1下700次循环中表现出1061.1mAh g-1的优异循环稳定性(容量保持率为70.0%),平均库仑效率为99.3%Si@V3O4@C||LiFePO4全电池在0.5C下130次循环后显示出78.7%的优异容量保持率。这项研究为设计用于先进LIBs的高性能硅阳极开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries

Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries

Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core–shell heterostructure, Si as the core and V3O4@C as the shell (Si@V3O4@C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3O4@C electrode exhibits an excellent cycling stability of 1061.1 mAh g−1 at 0.5 A g−1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3O4@C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信