利用更高的植物系统发育见解来发现抗疟原虫药物。

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL
Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj
{"title":"利用更高的植物系统发育见解来发现抗疟原虫药物。","authors":"Phanankosi Moyo,&nbsp;Luke Invernizzi,&nbsp;Sephora M. Mianda,&nbsp;Wiehan Rudolph,&nbsp;Warren A. Andayi,&nbsp;Mingxun Wang,&nbsp;Neil R. Crouch,&nbsp;Vinesh J. Maharaj","doi":"10.1007/s13659-023-00396-x","DOIUrl":null,"url":null,"abstract":"<div><p>The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 ‘hot’ plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC<sub>50</sub> ≤ 1 µM) isolated from these plant orders and families are structurally unique to the ‘legacy’ antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.</p></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery\",\"authors\":\"Phanankosi Moyo,&nbsp;Luke Invernizzi,&nbsp;Sephora M. Mianda,&nbsp;Wiehan Rudolph,&nbsp;Warren A. Andayi,&nbsp;Mingxun Wang,&nbsp;Neil R. Crouch,&nbsp;Vinesh J. Maharaj\",\"doi\":\"10.1007/s13659-023-00396-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 ‘hot’ plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC<sub>50</sub> ≤ 1 µM) isolated from these plant orders and families are structurally unique to the ‘legacy’ antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.</p></div>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13659-023-00396-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-023-00396-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

抗疟药耐药性难题可能会逆转为遏制疟疾祸害而取得的巨大进展,因此迫切需要找到新的化学支架,作为开发新型抗疟药物的模板。植物是发现独特的潜在抗疟原虫化学支架的可行替代来源。为了加快从植物中发现新的抗疟原虫化合物,本研究的目的是使用系统发育分析来确定可以合理优先发现抗疟药物的高等植物目和科。我们查询了PubMed数据库中记录从高等植物中分离的天然化合物抗疟原虫特性的出版物。此后,我们手动整理了报告的化合物以及来源的植物物种和相关药理学数据。我们系统地将抗疟原虫相关植物物种划分为公认的科和目,然后计算每个分类群化合物的抗性指数、选择性指数和理化性质。将生成的系统发育树与每个分支的生物学数据进行关联,可以识别出3个“热门”植物目和科。排名前三的植物目是(i)石竹目、(ii)蟾蜍目和(iii)金花菜目。排名前三的植物科是(i)Ancisrocladaceae,(ii)Simaroubaceae和(iii)Buxaceae。高活性天然化合物(IC50 ≤ 1µM)在结构上是“传统”抗疟药物所独有的。我们的研究能够在顺序和家族级别上确定最高产的分类群,我们建议在寻找强效、安全和类药物的抗疟分子时优先考虑这些分类群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery

Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery

Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery

Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery

The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 ‘hot’ plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC50 ≤ 1 µM) isolated from these plant orders and families are structurally unique to the ‘legacy’ antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信