Yi-Jing Li, Jia-Qi Wang, Wen Tian, Lu Han, Ting Xiao, Xiu-Hai Wu, Lei Wang, Pei-Pei Yang, Hui Cao, Wan-Hai Xu and Hao Wang
{"title":"一种特异性诱导微管凝聚的粘附肽。","authors":"Yi-Jing Li, Jia-Qi Wang, Wen Tian, Lu Han, Ting Xiao, Xiu-Hai Wu, Lei Wang, Pei-Pei Yang, Hui Cao, Wan-Hai Xu and Hao Wang","doi":"10.1039/D3MH00867C","DOIUrl":null,"url":null,"abstract":"<p >Cell function-associated biomolecular condensation has great potential in modulation of molecular activities. We develop a microtubule-trapping peptide that first self-assembles into nanoparticles and then <em>in situ</em> transforms into nanofibers <em>via</em> ligand–receptor interactions when targeted to tubulin. The nanofibers support the increased exposed targets for further adhering to microtubules and induce the self-assembly of microtubules into networks due to multivalent effects. Microtubule condensation with prolonged retention in cells for up to 24 h, which is 6 times longer than that of the non-transformable nanoparticle group, efficiently induces <em>in vitro</em> cell apoptosis and inhibits <em>in vivo</em> tumour growth. These smart transformable peptide materials for targeted protein condensation have the potential for improving retention and inducing cell apoptosis in tumour therapy.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 5298-5306"},"PeriodicalIF":12.2000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adhesive peptide specifically induces microtubule condensation†\",\"authors\":\"Yi-Jing Li, Jia-Qi Wang, Wen Tian, Lu Han, Ting Xiao, Xiu-Hai Wu, Lei Wang, Pei-Pei Yang, Hui Cao, Wan-Hai Xu and Hao Wang\",\"doi\":\"10.1039/D3MH00867C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cell function-associated biomolecular condensation has great potential in modulation of molecular activities. We develop a microtubule-trapping peptide that first self-assembles into nanoparticles and then <em>in situ</em> transforms into nanofibers <em>via</em> ligand–receptor interactions when targeted to tubulin. The nanofibers support the increased exposed targets for further adhering to microtubules and induce the self-assembly of microtubules into networks due to multivalent effects. Microtubule condensation with prolonged retention in cells for up to 24 h, which is 6 times longer than that of the non-transformable nanoparticle group, efficiently induces <em>in vitro</em> cell apoptosis and inhibits <em>in vivo</em> tumour growth. These smart transformable peptide materials for targeted protein condensation have the potential for improving retention and inducing cell apoptosis in tumour therapy.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 11\",\"pages\":\" 5298-5306\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh00867c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh00867c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An adhesive peptide specifically induces microtubule condensation†
Cell function-associated biomolecular condensation has great potential in modulation of molecular activities. We develop a microtubule-trapping peptide that first self-assembles into nanoparticles and then in situ transforms into nanofibers via ligand–receptor interactions when targeted to tubulin. The nanofibers support the increased exposed targets for further adhering to microtubules and induce the self-assembly of microtubules into networks due to multivalent effects. Microtubule condensation with prolonged retention in cells for up to 24 h, which is 6 times longer than that of the non-transformable nanoparticle group, efficiently induces in vitro cell apoptosis and inhibits in vivo tumour growth. These smart transformable peptide materials for targeted protein condensation have the potential for improving retention and inducing cell apoptosis in tumour therapy.