Vojtěch Kundrát, Rita Rosentsveig, Kristýna Bukvišová, Daniel Citterberg, Miroslav Kolíbal, Shachar Keren, Iddo Pinkas, Omer Yaffe, Alla Zak and Reshef Tenne*,
{"title":"亚毫米长的WS2纳米管:通往无机Buckypaper的途径。","authors":"Vojtěch Kundrát, Rita Rosentsveig, Kristýna Bukvišová, Daniel Citterberg, Miroslav Kolíbal, Shachar Keren, Iddo Pinkas, Omer Yaffe, Alla Zak and Reshef Tenne*, ","doi":"10.1021/acs.nanolett.3c02783","DOIUrl":null,"url":null,"abstract":"<p >WS<sub>2</sub> nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS<sub>2</sub> nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000–5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W<sub>5</sub>O<sub>14</sub> nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W<sub>18</sub>O<sub>49</sub> nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS<sub>2</sub> nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS<sub>2</sub> nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 22","pages":"10259–10266"},"PeriodicalIF":9.6000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.3c02783","citationCount":"0","resultStr":"{\"title\":\"Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper\",\"authors\":\"Vojtěch Kundrát, Rita Rosentsveig, Kristýna Bukvišová, Daniel Citterberg, Miroslav Kolíbal, Shachar Keren, Iddo Pinkas, Omer Yaffe, Alla Zak and Reshef Tenne*, \",\"doi\":\"10.1021/acs.nanolett.3c02783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >WS<sub>2</sub> nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS<sub>2</sub> nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000–5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W<sub>5</sub>O<sub>14</sub> nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W<sub>18</sub>O<sub>49</sub> nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS<sub>2</sub> nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS<sub>2</sub> nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"23 22\",\"pages\":\"10259–10266\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.3c02783\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c02783\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c02783","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper
WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000–5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.